Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-22T20:19:14.121Z Has data issue: false hasContentIssue false

Galactic outflows at high spatial resolution via gravitational lensing

Published online by Cambridge University Press:  04 June 2020

Justin Spilker*
Affiliation:
University of Texas at Austin, 2515 Speedway Stop C1400, Austin, TX 78712, USA email: spilkerj@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The completion of the Atacama Large Millimeter/submillimeter Array (ALMA) has led to the ability to make observations with unprecedented resolution at sub-millimeter wavelengths, allowing novel probes of the ISM and kinematics of high-redshift galaxies. Because they are magnified by foreground galaxies or clusters, gravitationally lensed galaxies allow the highest possible spatial resolution to be obtained, and/or a sharp reduction in the observing time required to detect faint objects or spectral lines. These benefits have made lensed galaxies useful benchmark systems for ALMA, enabling a wide variety of science cases. Here I focus in particular on spatially-resolved observations of massive galactic outflows in the very distant z > 4 universe, summarizing plausible tracers of the cold molecular phase of these outflows. The prospects of joint JWST and ALMA observations will be revolutionary, including the chance to take a full census of galactic outflows in multiple gas phases at matched spatial resolution.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Béthermin, M., De Breuck, C., Sargent, M., & Daddi, E. 2015, A&A, 576, L9Google Scholar
Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARAA, 51, 20710.1146/annurev-astro-082812-140944CrossRefGoogle Scholar
Brusa, M., Cresci, G., Daddi, E., et al. 2018, A&A, 612, A29Google Scholar
Ceverino, D., Dekel, A., Tweed, D., & Primack, J. 2015, MNRAS, 447, 329110.1093/mnras/stu2694CrossRefGoogle Scholar
Cicone, C., Maiolino, R., Sturm, E., et al. 2014, A&A, 562, A21Google Scholar
Cicone, C., Maiolino, R., Gallerani, S., et al. 2015, A&A, 574, A14Google Scholar
Decarli, R., Walter, F., Venemans, B. P., et al. 2018, ApJ, 854, 9710.3847/1538-4357/aaa5aaCrossRefGoogle Scholar
Fabian, A. C. 2012, ARAA, 50, 45510.1146/annurev-astro-081811-125521CrossRefGoogle Scholar
Feruglio, C., Maiolino, R., Piconcelli, E., et al. 2010, A&A, 518, L155Google Scholar
Fluetsch, A., Maiolino, R., Carniani, S., et al. 2019, MNRAS, 483, 4586Google Scholar
Förster Schreiber, N. M., Genzel, R., Newman, S. F., et al. 2014, ApJ, 787, 3810.1088/0004-637X/787/1/38CrossRefGoogle Scholar
Gallerani, S., Pallottini, A., Feruglio, C., et al. 2018, MNRAS, 473, 1909CrossRefGoogle Scholar
Genzel, R., Förster Schreiber, N. M., Rosario, D., et al. 2014, ApJ, 796, 7CrossRefGoogle Scholar
González-Alfonso, E., Fischer, J., Spoon, H. W. W., et al. 2017, ApJ, 836, 1110.3847/1538-4357/836/1/11CrossRefGoogle Scholar
Herrera-Camus, R., Tacconi, L., Genzel, R., et al. 2019, ApJ, 871, 3710.3847/1538-4357/aaf6a7CrossRefGoogle Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., & Kereš, D. 2008, ApJS, 175, 35610.1086/524362CrossRefGoogle Scholar
Hopkins, P. F., Kereš, D., Oñorbe, J., et al. 2014, MNRAS, 445, 58110.1093/mnras/stu1738CrossRefGoogle Scholar
Janssen, A. W., Christopher, N., Sturm, E., et al. 2016, ApJ, 822, 43Google Scholar
Kennicutt, R. C., & Evans, N. J. 2012, ARAA, 50, 53110.1146/annurev-astro-081811-125610CrossRefGoogle Scholar
Kormendy, J., & Ho, L. C. 2013, ARAA, 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Leroy, A. K., Walter, F., Martini, P., et al. 2015, ApJ, 814, 8310.1088/0004-637X/814/2/83CrossRefGoogle Scholar
Madau, P., & Dickinson, M. 2014, ARAA, 52, 41510.1146/annurev-astro-081811-125615CrossRefGoogle Scholar
Marrone, D. P., Spilker, J. S., Hayward, C. C., et al. 2018, Nature, 553, 5110.1038/nature24629CrossRefGoogle Scholar
McCourt, M., Oh, S. P., O’Leary, R., & Madigan, A.-M. 2018, MNRAS, 473, 540710.1093/mnras/stx2687CrossRefGoogle Scholar
Narayanan, D., Turk, M., Feldmann, R., et al. 2015, Nature, 525, 49610.1038/nature15383CrossRefGoogle Scholar
Richings, A. J., & Faucher-Giguère, C.-A. 2018, MNRAS, 474, 3673CrossRefGoogle Scholar
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005, ApJS, 160, 11510.1086/432889CrossRefGoogle Scholar
Scannapieco, E. 2013, ApJ, 763, L3110.1088/2041-8205/763/2/L31CrossRefGoogle Scholar
Schneider, E. E., & Robertson, B. E. 2017, ApJ, 834, 14410.3847/1538-4357/834/2/144CrossRefGoogle Scholar
Schneider, E. E., Robertson, B. E., & Thompson, T. A. 2018, ApJ, 862, 5610.3847/1538-4357/aacce1CrossRefGoogle Scholar
Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 6510.1086/373922CrossRefGoogle Scholar
Spilker, J., & Nyland, K. 2018, arXiv e-prints,arXiv:1810.06605Google Scholar
Spilker, J. S., Marrone, D. P., Aravena, M., et al. 2016, ApJ, 826, 11210.3847/0004-637X/826/2/112CrossRefGoogle Scholar
Spilker, J. S., Aravena, M., Béthermin, M., et al. 2018, Science, 361, 101610.1126/science.aap8900CrossRefGoogle Scholar
Straatman, C. M. S., Labbé, I., Spitler, L. R., et al. 2014, ApJL, 783, L1410.1088/2041-8205/783/1/L14CrossRefGoogle Scholar
Strandet, M. L., Weiß, A., Vieira, J. D., et al. 2016, ArXiv e-prints,arXiv:1603.05094Google Scholar
Veilleux, S., Meléndez, M., Sturm, E., et al. 2013, ApJ, 776, 27CrossRefGoogle Scholar
Weiß, A., De Breuck, C., Marrone, D. P., et al. 2013, ApJ, 767, 8810.1088/0004-637X/767/1/88CrossRefGoogle Scholar
Wellons, S., Torrey, P., Ma, C.-P., et al. 2015, MNRAS, 449, 36110.1093/mnras/stv303CrossRefGoogle Scholar
Werk, J. K., Prochaska, J. X., Tumlinson, J., et al. 2014, ApJ, 792, 8CrossRefGoogle Scholar
Wilson, R. W., Jefferts, K. B., & Penzias, A. A. 1970, ApJL, 161, L43CrossRefGoogle Scholar