Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-25T02:08:36.707Z Has data issue: false hasContentIssue false

The Impact of BAL Outflows on Cosmological Structure Formation

Published online by Cambridge University Press:  03 June 2010

Nahum Arav*
Affiliation:
Physics Department, Virginia Tech, Blacksburg, VA 24061, USA Email: arav@vt.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Quasar feedback has been invoked as a major mechanism for influencing large-scale cosmological structure. To quantify to what extent they affect the real universe, one needs to measure the mechanical energy output of quasars and assess the ability of this energy to produce the feedback. We have developed an observational/modeling program that has yielded the first reliable kinetic luminosity determinations of quasar broad absorption line (BAL) outflows, and have demonstrated that energetically they are indeed a major contributor to AGN feedback.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Arav, N., et al. 2007, ApJ, 658, 829CrossRefGoogle Scholar
Arav, N., et al. 2008, ApJ, 681, 954CrossRefGoogle Scholar
Bautista, M. A., et al. 2009, ApJ, submittedGoogle Scholar
Costatini, E., et al. 2007, A&A, 461, 121Google Scholar
de Kool, M., et al. 2002a, ApJ, 567, 58CrossRefGoogle Scholar
de Kool, M., et al. 2002b, ApJ, 570, 514CrossRefGoogle Scholar
Dunn, J. P., et al. 2009, ApJ, in pressCrossRefGoogle Scholar
Gabel, J. R., et al. 2005, ApJ, 623, 85Google Scholar
Gabel, J. R., et al. 2006, ApJ, 646, 742Google Scholar
Hamann, F. W., et al. 2001, ApJ, 550, 142Google Scholar
Heinz, S., Brüggen, M., Young, A., & Levesque, E. 2006, MNRAS, 373, L65CrossRefGoogle Scholar
Hewitt, P. C. & Foltz, C. B. 2003, AJ, 125, 1784CrossRefGoogle Scholar
Korista, K. T., Bautista, M. A., Arav, N., Moe, M., Costantini, E., & Benn, C. 2008, ApJ, 688, 108Google Scholar
Lynds, C. R. 1967, ApJ, 147, 837CrossRefGoogle Scholar
McNamara, B. R., Nulsen, P. E. J., Wise, M. W., Rafferty, D. A., Carilli, C., Sarazin, C. L., & Blanton, E. L. 2005, Nature, 433, 45Google Scholar
McNamara, B. R., Kazemzadeh, F., Rafferty, D. A., Birzan, L., Nulsen, P. E. J., Kirkpatrick, C. C., & Wise, M. W. 2009, ApJ, 698, 594CrossRefGoogle Scholar
Moe, M., et al. 2009, ApJ, 706, 525Google Scholar
Omma, H., Binney, J., Bryan, G., & Slyz, A. 2004, MNRAS, 348, 1105CrossRefGoogle Scholar
Vernaleo, J. C. & Reynolds, C. S. 2007, ApJ, 671, 171CrossRefGoogle Scholar
Wampler, E. J., Chugai, N. N., & Petitjean, P. 1995, ApJ, 443, 586CrossRefGoogle Scholar