Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-22T07:35:43.631Z Has data issue: false hasContentIssue false

Large-scale peculiar velocities through the galaxy luminosity function at z ~ 0.1

Published online by Cambridge University Press:  12 October 2016

Martin Feix
Affiliation:
Department of Physics, Israel Institute of Technology - Technion, Haifa 32000, Israel email: mfeix@physics.technion.ac.il
Adi Nusser
Affiliation:
Department of Physics, Israel Institute of Technology - Technion, Haifa 32000, Israel email: mfeix@physics.technion.ac.il Asher Space Science Institute, Israel Institute of Technology - Technion, Haifa 32000, Israel
Enzo Branchini
Affiliation:
Department of Physics, Università Roma Tre, Via della Vasca Navale 84, Rome 00146, Italy INFN Sezione di Roma 3, Via della Vasca Navale 84, Rome 00146, Italy INAF, Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Peculiar motion introduces systematic variations in the observed luminosity distribution of galaxies. This allows one to constrain the cosmic peculiar velocity field from large galaxy redshift surveys. Using around half a million galaxies from the SDSS Data Release 7 at z ~ 0.1, we demonstrate the applicability of this approach to large datasets and obtain bounds on peculiar velocity moments and σ8, the amplitude of the linear matter power spectrum. Our results are in good agreement with the ΛCDM model and consistent with the previously reported ~ 1% zero-point tilt in the SDSS photometry. Finally, we discuss the prospects of constraining the growth rate of density perturbations by reconstructing the full linear velocity field from the observed galaxy clustering in redshift space.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543 Google Scholar
Bilicki, M., Jarrett, T. H., Peacock, J. A., et al. 2014, ApJS, 210, 9 Google Scholar
Blanton, M. R., Schlegel, D. J., Strauss, M. A., et al. 2005, AJ, 129, 2562 Google Scholar
Blanton, M. R. & Roweis, S. 2007, AJ, 133, 734 Google Scholar
Feix, M., Nusser, A., & Branchini, E. 2014, JCAP, 09, 019 Google Scholar
Henriques, B. M. B., White, S. D. M., & Lemson, G. 2012, MNRAS, 421, 4 Google Scholar
Huchra, J. P., Macri, L. M., Masters, K. L., et al. 2012, ApJS, 199, 26 Google Scholar
Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv:1110.3193 Google Scholar
Levi, M., Bebek, C., Beers, T., et al. 2013, arXiv:1308.0847 Google Scholar
Nusser, A. & Davis, M. 1994, ApJ (Letters), 421, L1 Google Scholar
Nusser, A., Branchini, E., & Davis, M. 2011, ApJ, 735, 77 Google Scholar
Nusser, A., Branchini, E., & Davis, M. 2012, ApJ, 744, 193 Google Scholar
Padmanabhan, N., Schlegel, D. J., & Finkbeiner, D. P. 2008, ApJ, 674, 1217 Google Scholar
Sachs, R. K. & Wolfe, A. M. 1967, ApJ, 147, 73 Google Scholar
Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 7042 Google Scholar
Tammann, G. A., Yahil, A., & Sandage, A. 1979, ApJ, 234, 775 Google Scholar