Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-29T11:20:41.826Z Has data issue: false hasContentIssue false

Metallicity Dependences of Massive Star Formation from Theoretical and Observational Perspectives

Published online by Cambridge University Press:  29 August 2024

K. E. I. Tanaka*
Affiliation:
University of Colorado Boulder, Boulder, CO 80309, USA National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
Y. Zhang
Affiliation:
3University of Virginia, Charlottesville, VA 22904-4325, USA
T. Shimonishi
Affiliation:
4Niigata University, Ikarashi-ninocho 8050, Nishi-ku, Niigata, 950-2181, Japan
R. Matsukoba
Affiliation:
5Kyoto University, Sakyo, Kyoto 606-8502, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars play crucial roles in astrophysical settings across cosmic history, and thus it is a fundamental problem to understand whether their formation processes are universal or diverse in various galactic environments. In particular, metallicity is the essential characteristic of cosmic evolution. Our theoretical studies have suggested some degrees of metallicity dependence of massive star formation. In the extremely metal-poor case of , protostellar disks are significantly unstable, and the photoionization feedback is more efficient. We also execute an ALMA survey targeting massive protostars in the Large Magellanic Clouds (LMC) with . We found that the outflow properties of LMC protostars (mass, momentum, energy) are consistent with those of Galactic protostars, suggesting the universality of massive star formation at least in the range of .

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019, ApJL, 882, L24 Google Scholar
Beuther, H., Schilke, P., Menten, K. M., et al. 2002, Hot Star Workshop III: The Earliest Phases of Massive Star Birth, 267, 341 Google Scholar
Commerçon, B., González, M., Mignon-Risse, R., et al. 2022, A&A, 658, A52 Google Scholar
Fukui, Y., Harada, R., Tokuda, K., et al. 2015, ApJL, 807, L4 CrossRefGoogle Scholar
Fukushima, H., Hosokawa, T., Chiaki, G., et al. 2020, MNRAS, 497, 829 CrossRefGoogle Scholar
Krumholz, M. R., Klein, R. I., McKee, C. F., et al. 2009, Science, 323, 754 CrossRefGoogle Scholar
Machida, M. N. & Hosokawa, T. 2013, MNRAS, 431, 1719 CrossRefGoogle Scholar
Matsukoba, R., Tanaka, K. E. I., Omukai, K., et al. 2022, arXiv:2206.03497Google Scholar
Maud, L. T., Lumsden, S. L., Moore, T. J. T., et al. 2015, MNRAS, 452, 637 CrossRefGoogle Scholar
McKee, C. F. & Tan, J. C. 2008, ApJ, 681, 771 CrossRefGoogle Scholar
Moe, M., Kratter, K. M., & Badenes, C. 2019, ApJ, 875, 61 CrossRefGoogle Scholar
Rosen, A. L., Offner, S. S. R., Sadavoy, S. I., et al. 2020, SSRv., 216, 62 Google Scholar
Rosen, A. L. 2022, arXiv:2204.09700Google Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444 Google Scholar
Shimonishi, T., Onaka, T., Kawamura, A., et al. 2016, ApJ, 827, 72 Google Scholar
Tanaka, K. E. I. & Omukai, K. 2014, MNRAS, 439Google Scholar
Tanaka, K. E. I., Tan, J. C., & Zhang, Y. 2017, ApJ Google Scholar
Tanaka, K. E. I., Tan, J. C., Zhang, Y., et al. 2018, ApJ, 861, 68 Google Scholar