No CrossRef data available.
Article contents
MHD numerical simulations of Perseus A: formation of filaments and magnetic loops
Published online by Cambridge University Press: 01 November 2008
Abstract
The Perseus Cluster (A426) is the brightest cluster of galaxies observed in X-rays in the sky and its giant central galaxy (NGC1275) hosts the extended double radio source 3C84. There is a spectacular H-alpha nebulosity surrounding NGC1275 with loops and filaments that are probably magnetized and extend over 100 kpc. The continuous blowing of bubbles leading to the propagation of shock fronts is also evident and more recently, outflow and infall velocities of several 1000 km/s have been detected associated to the surrounding filaments. We here present preliminary results of 2.5D MHD simulations of the Perseus cluster central region assuming that the production of the outflow structures and loops that arise from the surface of NGC1275 are due to turbulent injection triggered by recent star formation and SNe activity in the galaxy. This is in turn, probably induced by a continuous gas infall from the satellite galaxies around NGC1275. Our simulations which include both, the turbulent gas outflow and gas infall from the surroundings, have revealed a continuous formation of the observed features, like the filaments, the gigantic magnetic loops and weak shock fronts that propagate into the ICM medium with the observed velocities of 1000–5000 km/s. After 10 Myr, a nearly steady state is established between the outflow material emerging from the central galaxy and the inflow gas from the surrounds. The outflow activity seems to retard the cannibalism action of the central galaxy over the surrounding galaxies. This result may have important implications over the evolution of the whole cluster as it seems to indicate that the SF and SNe production that are induced by the cannibalism may help to decelerate the later due to turbulence and outflow production. These results also offer important clues to the hot halo formation in the center of the cluster and in the suppression of cooling flows.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 4 , Symposium S259: Cosmic Magnetic Fields: From Planets, to Stars and Galaxies , November 2008 , pp. 567 - 568
- Copyright
- Copyright © International Astronomical Union 2009