Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-16T02:42:39.716Z Has data issue: false hasContentIssue false

The Milky Way, the Galactic Halo, and the Halos of Galaxies

Published online by Cambridge University Press:  09 May 2016

Ortwin Gerhard*
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik, Postsach 1312, 85741 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Milky Way, “our” Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to “time” the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abadi, M. G., Navarro, J. F., & Steinmetz, M. 2006, MNRAS, 365, 747Google Scholar
Arnaboldi, M., et al. 2012, Astron. Astrophys., 545, A37CrossRefGoogle Scholar
Battaglia, G., et al. 2005, MNRAS, 364, 433CrossRefGoogle Scholar
Beers, T. C., et al. 2012, Ap. J., 746, 34Google Scholar
Bell, E. F., et al. 2008, Ap. J., 680, 295CrossRefGoogle Scholar
Belokurov, V., et al. 2006, Ap. J., 642, L137Google Scholar
Belokurov, V., et al. 2013, MNRAS, 437, 116CrossRefGoogle Scholar
Bland-Hawthorn, J. & Gerhard, O. 2016, ARAA, eprint arXiv:1602.07702Google Scholar
Bond, N. A., et al. 2010, Ap. J., 716, 1Google Scholar
Brodie, J. P., et al. 2014, Ap. J., 796, 52Google Scholar
Bullock, J. S. & Johnston, K. V. 2005, Ap. J., 635, 931CrossRefGoogle Scholar
Cappellari, M., et al. 2015, Ap. J., 804, L21Google Scholar
Carollo, D., et al. 2007, Nature, 450, 1020CrossRefGoogle Scholar
Coccato, L., Arnaboldi, M., & Gerhard, O. 2013, MNRAS, 436, 1322Google Scholar
Coccato, L., Gerhard, O., Arnaboldi, M., & Ventimiglia, G. 2011, Astron. Astrophys., 533, A138CrossRefGoogle Scholar
Coccato, L., et al. 2009, MNRAS, 394, 1249Google Scholar
Cooper, A. P., et al. 2010, MNRAS, 406, 744Google Scholar
Cooper, A. P., et al. 2013, MNRAS, 434, 3348CrossRefGoogle Scholar
de Lorenzi, F., et al. 2008, MNRAS, 385, 1729CrossRefGoogle Scholar
Deason, A. J., Belokurov, V., & Evans, N. W. 2011, MNRAS, 416, 2903CrossRefGoogle Scholar
Duc, P.-A., et al. 2015, MNRAS, 446, 120Google Scholar
Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, Ap. J., 136, 748Google Scholar
Faccioli, L., et al. 2014, Ap. J., 788, 105Google Scholar
Ferguson, A. M. N., et al. 2002, Astron. J., 124, 1452Google Scholar
Greene, J. E., et al. 2012, Ap. J., 750, 32Google Scholar
Ibata, R. A., et al. 2014, Ap. J., 780, 128Google Scholar
Kafle, P. R., Sharma, S., Lewis, G. F., & Bland-Hawthorn, J. 2014, Ap. J., 794, 59Google Scholar
Lange, R., et al. 2015, MNRAS, 447, 2603Google Scholar
Licquia, T. C. & Newman, J. A. 2015, Ap. J., 806, 96Google Scholar
Longobardi, A., Arnaboldi, M., Gerhard, O., & Hanuschik, R. 2015a, Astron. Astrophys., 579, A135Google Scholar
Longobardi, A., Arnaboldi, M., Gerhard, O., & Mihos, J. C. 2015b, Astron. Astrophys., 579, L3CrossRefGoogle Scholar
Martínez-Delgado, D., et al. 2010, Astron. J., 140, 962Google Scholar
McCarthy, I. G., et al. 2012, MNRAS, 420, 2245Google Scholar
Mihos, J. C., Harding, P., Feldmeier, J., & Morrison, H. 2005, Ap. J., 631, L41Google Scholar
Monachesi, A., et al. 2016, MNRAS, 457, 1419Google Scholar
Morganti, L., et al. 2013, MNRAS, 431, 3570CrossRefGoogle Scholar
Naab, T., Johansson, P. H., & Ostriker, J. P. 2009, Ap. J., 699, L178Google Scholar
Oser, L., et al. 2010, Ap. J., 725, 2312Google Scholar
Pila-Díez, B., et al. 2015, Astron. Astrophys., 579, A38CrossRefGoogle Scholar
Pillepich, A., Madau, P., & Mayer, L. 2015, Ap. J., 799, 184Google Scholar
Portail, M., Wegg, C., Gerhard, O., & Martinez-Valpuesta, I. 2015, MNRAS, 448, 713Google Scholar
Pota, V., et al. 2013, MNRAS, 428, 389Google Scholar
Romanowsky, A. J., et al. 2012, Ap. J., 748, 29Google Scholar
Smith, M. C., et al. 2009, MNRAS, 399, 1223Google Scholar
Tal, T., van Dokkum, P. G., Nelan, J., & Bezanson, R. 2009, Astron. J., 138, 1417CrossRefGoogle Scholar
Trujillo, I., et al. 2007, MNRAS, 382, 109Google Scholar
van Dokkum, P. G., Abraham, R., & Merritt, A. 2014, Ap. J., 782, L24Google Scholar
van Dokkum, P. G., et al. 2010, Ap. J., 709, 1018Google Scholar
Veljanoski, J., et al. 2014, MNRAS, 442, 2929Google Scholar
Wegg, C., Gerhard, O., & Portail, M. 2015, MNRAS, 450, 4050Google Scholar
Weil, M. L., Bland-Hawthorn, J., & Malin, D. F. 1997, Ap. J., 490, 664Google Scholar
Wu, X., et al. 2014, MNRAS, 438, 2701Google Scholar