Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-28T03:17:41.887Z Has data issue: false hasContentIssue false

Organic molecules in meteorites

Published online by Cambridge University Press:  27 October 2016

Zita Martins*
Affiliation:
Dept of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK email: z.martins@imperial.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The analysis of the organic content of meteorites provides a window into the conditions of the early solar system, such as the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. The analysis of the soluble organic content of CM chondrites indicates that extensive aqueous alteration on their meteorite parent body may result on 1) the decomposition of α-amino acids; 2) synthesis of β- and γ-amino acids; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs); and 4) higher L-enantiomer excess (Lee) value of isovaline. Exogenous delivery of organic matter by meteorites may have contributed to the organic inventory of the early Earth, providing a diversity of resources to the first living organisms on Earth and on other places of our solar system where life could have potentially originated.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Blanchard, I., Gounelle, M., Bourot-Denise, M., & Kearsley, A. 2011, Meteorit. Planet. Sci. 46 A21. Google Scholar
Botta, O., Glavin, D. P., Kminek, G., & Bada, J. L. 2002, OLEB 32 143163.Google Scholar
Botta, O., Martins, Z., & Ehrenfreund, P. 2007, Meteorit. Planet. Sci., 42: 8192.Google Scholar
Bourot-Denise, M., Zanda, B., Marrocchi, Y., Greenwood, R. C., Pont, S., Hewins, R. H., Franchi, I. A., & Cornen, G. 2010, abstract #1533, 41st Lunar and Planetary Science Conference.Google Scholar
Browning, L. B., McSween, H. Y., & Zolensky, M. E. 1996, Geochimica Cosmochimica Acta 60 26212633.Google Scholar
Burton, A. S., Glavin, D. P., Callahan, M. P., Dworkin, J. P., Jenniskens, P., & Shaddad, M. H. 2011, Meteorit. Planet. Sci. 46 17031712.CrossRefGoogle Scholar
Caillet Komorowski, C., Boudouma, O., Renard, B., van de Moortele, B., & El Goresy, A. 2011, Meteorit. Planet. Sci. 46 A35. Google Scholar
Chan, H.-S., Martins, Z., & Sephton, M. A. 2012, Meteorit. Planet. Sci. 47 15021516.Google Scholar
Chyba, C. F. & Sagan, C. 1992, Nature 355 125132.Google Scholar
Clayton, R. N. & Mayeda, T. K. 1984, Earth Planet. Sci. Lett. 67 151161.Google Scholar
Cody, G. D. & Alexander, C. M. O. D. 2005, Geochimica et Cosmochimica Acta 69 10851097.Google Scholar
Cooper, G. W. & Cronin, J. R. 1995, Geochimica et Cosmochimica Acta 59 10031015.Google Scholar
Cournede, C., Gattacceca, J., Zanda, B., & Rochette, P. 2011, Meteorit. Planet. Sci. 46 A50. Google Scholar
Cronin, J. R. & Chang, S. 1993, In The Chemistry of Lifes Origin, edited by Greenberg, J. M., Mendoza-Gomez, C. X. and Pirronello, V. Dordrecht: Kluwer. pp. 209258.Google Scholar
Ehrenfreund, P., Glavin, D. P., Botta, O., Cooper, G., & Bada, J. L. 2001, PNAS 98 21382141.Google Scholar
Elsila, J. E., de Leon, N. P., Buseck, P. R., & Zare, R. N. 2005, Geochimica et Cosmochimica Acta 69 13491357.Google Scholar
Glavin, D. P., Dworkin, J. P., Aubrey, A., Botta, O., Doty, J. H., Martins, Z., & Bada, J. L. 2006, Meteorit. Planet. Sci. 41 889902.Google Scholar
Glavin, D. P., Aubrey, A. D., Callahan, M. P., Dworkin, J. P., Elsila, J. E., Parker, E. T., Bada, J. L., Jenniskens, P., & Shaddad, M. H. 2010, Meteorit. Planet. Sci. 45 16951709.CrossRefGoogle Scholar
Glavin, D. P., Callahan, M. P., Dworkin, J. P. and Elsila, J. E. 2011, Meteorit. Planet. Sci. 45 19481972.CrossRefGoogle Scholar
Kimura, M., Grossman, J. N., & Weisberg, M. K. 2011, Meteorit. Planet. Sci. 46 431442.Google Scholar
Martins, Z. 2011, Elements, 7, 3540.Google Scholar
Martins, Z. M. & Sephton, A. 2009, In Hughes, A. B. (Ed.), Amino acids, peptides and proteins in organic chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 3–42.Google Scholar
Martins, Z., Watson, J. S., Sephton, M. A., Botta, O., Ehrenfreund, P., & Gilmour, I. 2006, Meteorit. Planet. Sci. 41 10731080.Google Scholar
Martins, Z., Alexander, C. M. O. D., Orzechowska, G. E., Fogel, M. L., & Ehrenfreund, P. 2007, Meteorit. Planet. Sci. 42 21252136.Google Scholar
Martins, Z., Modica, P., Zanda, B. & Le Sergeant DHendecourt, L. 2015, Meteorit. Planet. Sci. 50 926943.Google Scholar
Merouane, S., Djouadi, Z., Brunetto, R., Borg, J., & Dumas, P. 2011, Proceedings, EPSC-DPS Joint Meeting, pp.902.Google Scholar
Merouane, S., Djouadi, Z., Le Sergeant dHendecourt, L., Zanda, B., & Borg, J. 2012, ApJ 756 154160.Google Scholar
Palmer, E. E. & Lauretta, D. S. 2011, Meteorit. Planet. Sci. 46 15871607.Google Scholar
Pizzarello, S., Huang, Y., & Alexandre, M. R. 2008, PNAS 105 37003704.CrossRefGoogle Scholar
Rodante, F., Marrosu, G., & Catalani, G. 1992, Thermochimica Acta 194 197213.Google Scholar
Rubin, A. E., Trigo-Rodriguez, J. M., Huber, H., & Wasson, J. T. 2007, Geochimica et Cosmochimica Acta 71 23612382.Google Scholar
Schidlowski, M. 1988, Nature 333 313318.Google Scholar
Schmitt-Kopplin, P., Gabelica, Z., Gougeon, R. D., Fekete, A., Kanawati, B., Harir, M., Gebefuegi, I., Eckel, G., & Hertkorn, N. 2010, PNAS 107 27632768.Google Scholar
Schopf, J. W. 1993, Science 260 640646.Google Scholar
Shimoyama, A. & Ogasawara, R. 2002, OLEB 32 165179.Google Scholar
Tomeoka, K. & Buseck, P. R. 1985, Geochimica et Cosmochimica Acta 49 21492163.CrossRefGoogle Scholar
Zolensky, M. & McSween, H. Y. 1988, In Meteorites and the early solar system, edited by Kerridge, J. F., Matthews, M. S. Tucson: University of Arizona Press. pp. 114–143.Google Scholar
Zolensky, M. E., Mittlefehldt, D. W., Lipschutz, M. E., Wang, M.-S., Clayton, R. N., Mayeda, T. K., Grady, M. M., Pillinger, C., & Barber, D. 1997, Geochimica et Cosmochimica Acta 61 50995115.Google Scholar