Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-31T06:27:49.675Z Has data issue: false hasContentIssue false

The origin of the galaxy color bimodality

Published online by Cambridge University Press:  12 October 2016

M. A. Aragón-Calvo
Affiliation:
Dept. Physics and Astronomy, Univ. California, Riverside, CA, USA. email: maragon@ucr.edu Dept. Physics and Astronomy, Johns Hopkins University., Baltimore, MD 21218, USA.
Mark C. Neyrinck
Affiliation:
Dept. Physics and Astronomy, Johns Hopkins University., Baltimore, MD 21218, USA.
Joseph Silk
Affiliation:
Dept. Physics and Astronomy, Johns Hopkins University., Baltimore, MD 21218, USA. Institut d Astrophysique de Paris, Univ. Paris VI, 98 bis boulevard Arago, 75014 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The star formation history of galaxies is a complex process usually considered to be stochastic in nature, for which we can only give average descriptions such as the color-density relation. In this work we follow star-forming gas particles in a hydrodynamical N-body simulation back in time in order to study their initial spatial configuration. By keeping record of the time when a gas particle started forming stars we can produce Lagrangian gas-star isochrone surfaces delineating the surfaces of accreting gas that begin producing stars at different times. These surfaces form a complex a network of filaments in Eulerian space from which galaxies accrete cold gas. Lagrangian accretion surfaces are closely packed inside dense regions, intersecting each other, and as a result galaxies inside proto-clusters stop accreting gas early, naturally explaining the color dependence on density. The process described here has a purely gravitational / geometrical origin, arguably operating at a more fundamental level than complex processes such as AGN and supernovae, and providing a conceptual origin for the color-density relation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bauermeister, A., Blitz, L., & Ma, C.-P. 2010, ApJ, 717, 323 CrossRefGoogle Scholar
Bell, E. F., Wolf, C., Meisenheimer, K., et al. 2004, ApJ, 608, 752 CrossRefGoogle Scholar
Blanton, M. R., Eisenstein, D., Hogg, D. W., Schlegel, D. J., & Brinkmann, J. 2005, ApJ, 629, 143 CrossRefGoogle Scholar
Dekel, A., & Birnboim, Y. 2006, MNRAS, 368, 2 CrossRefGoogle Scholar
Dekel, A., Birnboim, Y., Engel, G., et al. 2009, Nature, 457, 451 CrossRefGoogle Scholar
Dressler, A. 1980, ApJ, 236, 351 CrossRefGoogle Scholar
Gunn, J. E., & Gott, J. R. III, 1972, ApJ, 176, 1 CrossRefGoogle Scholar
Kawata, D., & Mulchaey, J. S. 2008, ApJLett, 672, L103 CrossRefGoogle Scholar
Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2 CrossRefGoogle Scholar
Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ, 237, 692 CrossRefGoogle Scholar
Moore, B., Katz, N., Lake, G., Dressler, A., & Oemler, A. 1996, Nature, 379, 613 CrossRefGoogle Scholar
Papadopoulos, P., Ivison, R., Carilli, C., & Lewis, G. 2001, Nature, 409, 58 CrossRefGoogle Scholar
Powell, L. C., Slyz, A., & Devriendt, J. 2011, MNRAS, 414, 3671 CrossRefGoogle Scholar
Skibba, R. A., Bamford, S. P., Nichol, R. C., et al. 2009, MNRAS, 399, 966 CrossRefGoogle Scholar
Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289 CrossRefGoogle Scholar
van de Voort, F., Schaye, J., Booth, C. M., Haas, M. R., & Dalla Vecchia, C. 2011, MNRAS, 414, 2458 CrossRefGoogle Scholar
Wolfe, S. A., Pisano, D. J., Lockman, F. J., McGaugh, S. S., & Shaya, E. J. 2013, Nature, 497, 224 CrossRefGoogle Scholar