Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T13:06:50.897Z Has data issue: false hasContentIssue false

Photoproduction of H3+ from gaseous methanol inside dense molecular clouds

Published online by Cambridge University Press:  01 February 2008

S. Pilling
Affiliation:
LNLS, Laboratório Nacional de Luz Síncrotron, São Paulo, Brazil. email: sergiopilling@yahoo.com.br
D. P. P. Andrade
Affiliation:
UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. email: diana_andrade@ufrj.br, toni@if.ufrj.br, heloisa@ov.ufrj.br
A. C. F. Santos
Affiliation:
UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. email: diana_andrade@ufrj.br, toni@if.ufrj.br, heloisa@ov.ufrj.br
H. M. Boechat-Roberty
Affiliation:
UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. email: diana_andrade@ufrj.br, toni@if.ufrj.br, heloisa@ov.ufrj.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present experimental results obtained from photoionization and photodissociation processes of abundant interstellar methanol (CH3OH) as an alternative route for the production of H3+ in dense clouds. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS) employing soft X-ray and time-of-flight mass spectrometry. Mass spectra were obtained using the photoelectron-photoion coincidence techniques. Absolute averaged cross sections for the production of H3+ due to molecular dissociation of methanol by soft X-rays (C1s edge) were determined. The H3+'s photoproduction rate and column density were been estimated adopting a typical soft X-ray luminosity inside dense molecular and the observed column density of methanol. Assuming a steady state scenario, the highest column density value for the photoproduced H3+ was about 1011 cm2, which gives the ratio photoproduced/observed of about 0.05%, as in the case of dense molecular cloud AFGL 2591. Despite the small value, this represent a new and alternative source of H3+ into dense molecular clouds and it is not been considered as yet in interstellar chemistry models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Boechat-Roberty, H. M., Pilling, S., & Santos, A. C. F. 2005, A&A, 438, 915.Google Scholar
Dalgarno, A. & Black, J. H. 1976, Rep. Prog. Phys., 39, 573.CrossRefGoogle Scholar
Herbst, E., & Klemperer, W. 1973, ApJ, 185, 505.CrossRefGoogle Scholar
Koyama, K., Hamaguchi, K., Ueno, S., Kobayashi, N., & Feigelson, E. D. 1996, PASJ (Letters), 48, L87.CrossRefGoogle Scholar
Oka, T. 2006, PNAS, 103, 12235.CrossRefGoogle Scholar
Maloney, P. R., Hollenbach, D. J., & Tielens, A. G. G. M. 1996, ApJ, 466, 561.CrossRefGoogle Scholar
McCall, B. J., Geballe, T. R., Hinkle, K. H., & Oka, T. 1998, Science, 279, 1910.CrossRefGoogle Scholar
Stäuber, P., Doty, S. D., van Dishoeck, E. F., & Benz, A. O. 2005, A&A, 440, 949.Google Scholar
Pilling, S., Andrade, D. P. P., Neves, R., Ferreira-Rodrigues, A. M., Santos, A.C.F., & Boechat-Roberty, H. M. 2007a, MNRAS, 375, 1488.CrossRefGoogle Scholar
Pilling, S., Neves, R., Santos, A. C. F., & Boechat-Roberty, H. M. 2007b, A&A, 464, 393.Google Scholar
Pilling, S., Santos, A. C. F., & Boechat-Roberty, H. M. 2006, A&A, 449, 1289.Google Scholar