Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-27T17:53:09.540Z Has data issue: false hasContentIssue false

Probing the Conditions for the Atomic-to-Molecular Transition in the Interstellar Medium

Published online by Cambridge University Press:  09 June 2023

Gyueun Park
Affiliation:
Korea Astronomy & Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea email:gpark@kasi.re.kr Department of Astronomy & Space Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea email: mlee@kasi.re.kr
Min-Young Lee
Affiliation:
Korea Astronomy & Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea email:gpark@kasi.re.kr Department of Astronomy & Space Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea email: mlee@kasi.re.kr
Shmuel Bialy
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742, USA
Blakesley Burkhart
Affiliation:
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
Joanne Dawson
Affiliation:
Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia
Carl Heiles
Affiliation:
Department of Astronomy, University of California, Berkeley, CA 94720, USA
Di Li
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China NAOC-UKZN Computational Astrophysics Centre, University of KwaZulu-Natal, Durban 4000, South Africa Research Center for Intelligent Computing, Zhejiang Laboratory, Hangzhou 311100, China
Claire Murray
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Department of Physics & Astronomy, Johns Hopkins University, MD 21218, USA
Hiep Nguyen
Affiliation:
Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia
Anita Petzler
Affiliation:
Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia
Snežana Stanimirović
Affiliation:
Department of Astronomy, University of Wisconsin, Madison, WI 53706-15821, USA

Abstract

We examine the physical conditions required for the formation of H2 in the solar neighborhood by comparing H i emission and absorption spectra toward 58 lines of sight at b < −5 to CO(1–0) and dust data. Our analysis of CO-associated cold and warm neutral medium (CNM and WNM) shows that the formation of CO-traced molecular gas is favored in regions with high column densities where the CNM becomes colder and more abundant. In addition, our comparison to the one-dimensional steady-state H i-to-H2 transition model of Bialy et al. (2016) suggests that only a small fraction of the clumpy CNM participates in the formation of CO-traced molecular gas. Another possible interpretation would be that missing physical and chemical processes in the model could play an important role in H2 formation.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bialy, S. & Sternberg, A. 2016, ApJ, 822, 83 10.3847/0004-637X/822/2/83CrossRefGoogle Scholar
Goldsmith, P. F., Pineda, J. L., Neufeld, D. A., et al., 2018, ApJ, 856, 96 10.3847/1538-4357/aab34eCrossRefGoogle Scholar
Jenkins, E. B. & Tripp, T. M. 2011, ApJ, 734, 65 10.1088/0004-637X/734/1/65CrossRefGoogle Scholar
Nguyen, H., Dawson, J. R., Lee, M.-Y., et al., 2019, ApJ, 880, 141 10.3847/1538-4357/ab2b9fCrossRefGoogle Scholar
Collaboration, Planck, Aghanim, N., Ashdown, M., et al., 2016, A&A, 596, A109 Google Scholar
Stanimirović, S., Murray, C. E., Lee, M.-Y., et al., 2014, ApJ, 793, 13210.1088/0004-637X/793/2/132CrossRefGoogle Scholar