Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T18:25:40.342Z Has data issue: false hasContentIssue false

Radial 3D-Needlets on the Unit Ball

Published online by Cambridge University Press:  01 July 2015

Claudio Durastanti
Affiliation:
Department of Mathematics, University of Tor Vergata, Rome, email: durastan@mat.uniroma2.it
Yabebal T. Fantaye
Affiliation:
Department of Mathematics, University of Tor Vergata, Rome, email: fantaye@mat.uniroma2.it
Frode K. Hansen
Affiliation:
Institutt for teoretisk astrofysikk, University of Oslo, email: f.k.hansen@astro.uio.no
Domenico Marinucci
Affiliation:
Department of Mathematics, University of Tor Vergata, Rome, email: marinucc@mat.uniroma2.it
Isaac Z. Pesenson
Affiliation:
Department of Mathematics, Temple University, Philadelphia, email: isaak.pesenson@temple.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a simple construction of spherical wavelets for the unit ball, which we label Radial 3D Needlets. We envisage an experimental framework where data are collected on concentric spheres with the same pixelization at different radial distances from the origin. The unit ball is hence viewed as a tensor product of the unit interval with the unit sphere: a set of eigenfunctions is therefore defined on the corresponding Laplacian operator. Wavelets are then constructed by a smooth convolution of the projectors defined by these eigenfunctions. Localization properties may be rigorously shown to hold in the real and harmonic domain, and an exact reconstruction formula holds; the system allows a very convenient computational implementation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bobin, J., Sureau, F., Paykari, P., Rassat, A., Basak, S., & Starck, J.-L. 2013, A&A, 553, L4Google Scholar
Donzelli, S., Hansen, F. K., Liguori, M., Marinucci, D., & Matarrese, S. 2012, ApJ, 755, 19Google Scholar
Faÿ, G., Guilloux, F., Betoule, M., Cardoso, J.-F., Delabrouille, J., & Le Jeune, M. 2008, Phys. Rev. D, D78:083013Google Scholar
Geller, D. & Mayeli, A. 2009, Math. Z. 1, 263Google Scholar
Gorski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., & Bartelman, M. 2005, ApJ, 622CrossRefGoogle Scholar
Lanusse, F., Rassat, A., & Starck, J. L. 2012, A&A 540, A9Google Scholar
Laureijs, R., Duvet, L., Escudero Sanz, I., Gondoin, P., Lumb, D. H., Oosterbroek, T., & Saavedr ACriado, G. 2010, The Euclid Mission SPIE Proceedings 7731CrossRefGoogle Scholar
Leistedt, B. & McEwen, J. D. 2012, IEEE Trans. on Sign. Proc. 60, 12Google Scholar
Marinucci, D., Pietrobon, D., Balbi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P., Picard, D. & Vittorio, N. 2008, MNRAS, 383, 2Google Scholar
McEwen, J. D., Vielva, P., Wiaux, Y., Barreiro, R. B., Cayón, I., Hobson, M. P., Lasenby, A. N., Martí nez-González, E., & Sanz, J. L. 2007, J. Fourier Anal. Appl., 13, 4Google Scholar
Narcowich, F. J., Petrushev, P., & Ward, J. D. 2006, SIAM Journal of Mathematical Analysis, 38Google Scholar
Narcowich, F. J., Petrushev, P., & Ward, J. D. 2006, Journal of Functional Analysis, 238, 2CrossRefGoogle Scholar
Pesenson, I. Z. 2014, submittedGoogle Scholar
Pietrobon, D., Amblard, A., Balbi, A., Cabella, P., Cooray, A., & Marinucci, D. 2008, Phys. Rev. D, D78:103504Google Scholar
Planck Collaboration, 2013, to appear on A&AGoogle Scholar
Starck, J.-L., Moudden, Y., Abrial, P., & Nguyen, M. 2006, A&A, 446Google Scholar
Starck, J.-L., Murtagh, F., & Fadili, J.Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Cambridge University Press)Google Scholar