Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-09-01T07:33:11.267Z Has data issue: false hasContentIssue false

Radiation Magnetohydrodynamic Simulations of Soft X-ray Emitting Regions in Active Galactic Nuclei

Published online by Cambridge University Press:  20 January 2023

Taichi Igarashi
Affiliation:
Chiba University, email: igarashi.taichi@chiba-u.jp
Yoshiaki Kato
Affiliation:
RIKEN
Hiroyuki R. Takahashi
Affiliation:
Komazawa University
Ken Ohsuga
Affiliation:
University of Tsukuba
Yosuke Matsumoto
Affiliation:
Chiba University, email: igarashi.taichi@chiba-u.jp
Ryoji Matsumoto
Affiliation:
Chiba University, email: igarashi.taichi@chiba-u.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the results of global three-dimensional radiation magnetohydrodynamic simulations of the formation of soft X-ray emitting regions in active galactic nuclei by applying a radiation magnetohydrodynamic code based on the M1-closure scheme. The effect of Compton cooling is taken into account. When the surface density of the accretion flow exceeds the upper limit of the radiatively inefficient accretion flow (RIAF), the optically thin, hot accretion flow near the black hole co-exists with the soft X-ray emitting, warm (T = 106 – 107 K) Comptonized region around r = 20 – 40rs, where rs is the Schwarzschild radius. Numerical results indicate that when the accretion rate approaches the Eddington accretion rate, the warm Comptonized region stays in optically thin for effective optical depth, Thomson thick, and radiation pressure dominant state. This region is found to oscillate between a geometrically thin, cool state and a geometrically thick state inflated by radiation pressure. The time variability of the accretion flow is consistent with that of the narrow-line Seyfert 1 galaxies.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Belloni, T. M., Bhattacharya, D., Caccese, P., et al. 2019, MNRAS, 489, 1037 CrossRefGoogle Scholar
Biang, W., & Zhao, Y. 2004, MNRAS, 352, 823 CrossRefGoogle Scholar
Chaudhury, K., Chitnis, V. R., Rao, A. R., et al. 2018, MNRAS, 478, 4830 CrossRefGoogle Scholar
Done, C., Davis, S. W., Jin, C., Blaes, O., & Ward, M. 2012, MNRAS, 420, 1848 CrossRefGoogle Scholar
Honma, F., Matsumoto, R., & Kato, S. 1991, PASJ, 43, 147 Google Scholar
Igarashi, T., Kato, Y., Takahashi, H. R., et al. 2020, ApJ, 902, 103 CrossRefGoogle Scholar
Jiang, Y.-F., Stone, J. M., & Davis, S. W. 2019, ApJ, 880, 67 CrossRefGoogle Scholar
Kato, Y., Mineshige, S., & Shibata, K. 2004, ApJ, 605, 307 CrossRefGoogle Scholar
Kumar, R. & Yuan, Y. 2021, ApJ, 910, 9 CrossRefGoogle Scholar
Lowrie, R. B., Morel, J. E., & Hittinger, J. A. 1999, ApJ, 521, 423 CrossRefGoogle Scholar
Matsumoto, Y., Asahina, Y., Kudoh, Y., et al. 2019, PASJ, 71, 83 CrossRefGoogle Scholar
Morgan, E. H., Remillard, R. A., & Greiner, J. 1997, ApJ, 482, 993 CrossRefGoogle Scholar
Noda, H., & Done, C. 2018, MNRAS, 480, 3898 CrossRefGoogle Scholar
Ohsuga, K. 2006, ApJ, 640, 923 Google Scholar
Takahashi, H. R., Ohsuga, K., Kawashima, T., & Sekiguchi, Y. 2016, ApJ, 826, 23 CrossRefGoogle Scholar
Yokoyama, T., & Shibata, K. 1994, ApJ, 436, L197 CrossRefGoogle Scholar