Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-10T12:03:16.007Z Has data issue: false hasContentIssue false

Radio evidence for AGN activity: relativistic jets as tracers of SMBHs

Published online by Cambridge University Press:  07 March 2016

Kenneth I. Kellermann*
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA, USA email: kkellerm@nrao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although the radio emission from most quasars appears to be associated with star forming activity in the host galaxy, about ten percent of optically selected quasars have very luminous relativistic jets apparently powered by a SMBH which is located at the base of the jet. When these jets are pointed close to the line of sight their apparent luminosity is enhanced by Doppler boosting and appears highly variable. High resolution radio interferometry shows directly the outflow of relativistic plasma jets from the SMBH. Apparent transverse velocities in these so-called “blazars” are typically about 7c but reach as much as 50c indicating true velocities within one percent of the speed of light. The jets appear to be collimated and accelerated in regions as much as a hundred parsecs downstream from the SMBH. Measurements made with Earth to space interferometers indicate apparent brightness temperatures of ~ 1014 K or more. This is well in excess of the limits imposed by inverse Compton cooling. The modest Doppler factors deduced from the observed ejection speeds appear to be inadequate to explain the high observed brightness temperatures in terms of relativistic boosting.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Baade, W. & Minkowski, R. 1954, ApJ, 119, 206Google Scholar
Bolton, J. G. 1960, paper presented to the URSI General Assembly, London, September 1960, Observations of the Owens Valley Radio Observatory 1960 No. 5Google Scholar
Bolton, J. G. 1990, Proceedings of the Astronomical Society of Australia, 8, 381Google Scholar
Bolton, J. G., Stanley, G. J., & Slee, O. B. 1949, Nature, 164, 101Google Scholar
Burbidge, G. R. 1959, ApJ, 129, 849Google Scholar
Cohen, M. H., Lister, M. L., Homan, D. C., et al. 2007, ApJ, 658, 232Google Scholar
Condon, J. J. 1992, ARAA 30 pg. 575Google Scholar
Condon, J. J., Cotton, W. D., Fomalont, E. B., et al. 2012, ApJ, 758, 23CrossRefGoogle Scholar
Condon, J. J., Kellermann, K. I., Kimball, A. E., Ivezić, Ž., & Perley, R. A. 2013, ApJ, 768, 37Google Scholar
Dent, W. A. 1965, Science, 148, 1458Google Scholar
Ekers, R. D. 2015, IAU Symposium 312, Star Clusters and Black Holes in Galaxies and Across Cosmic TimeGoogle Scholar
Fixsen, D. J., Kogut, A., Levin, S., et al. 2011, ApJ, 734, 5Google Scholar
Greenstein, J. L., 1962, manuscript submitted to the Astrophysical Journal, but subsequently withdrawnGoogle Scholar
Homan, D. C., Kadler, M., Kellermann, K. I., et al. 2009, ApJ, 706, 1253Google Scholar
Homan, D. C., Lister, M. L., Kovalev, Y. Y., et al. 2014, arXiv:1410.8502Google Scholar
Hoyle, F., Fowler, W. A., Burbidge, G. R., & Burbidge, E. M. 1964, ApJ, 139, 909Google Scholar
Jeans, J. H. 1961, Astronomy and Cosmogony, New York: Dover, 1961, p. 360Google Scholar
Kellermann, K. I., Lister, M. L., Homan, D. C., et al. 2004, ApJ, 609, 539Google Scholar
Kellermann, K. I., RadioAstron AGN Early Science Team 2014, American Astronomical Society Meeting Abstracts 223, #421.04Google Scholar
Kimball, A. E., Kellermann, K. I., Condon, J. J., Ivezić, Ž., & Perley, R. A. 2011, ApJL, 739, L29Google Scholar
Kinman, T. D. 1965, ApJ, 142, 1241CrossRefGoogle Scholar
Kovalev, Y. Y., Kellermann, K. I., Lister, M. L., et al. 2005, AJ, 130, 2473Google Scholar
Kovalev, Y. Y., Lister, M. L., Homan, D. C., & Kellermann, K. I. 2007, ApJL, 668, L27Google Scholar
Kovalev, Y. 2014, IAU Symposium 304, pg. 78Google Scholar
Lister, M. L., Cohen, M. H., Homan, D. C., et al. 2009, ApJ, 138, 1874Google Scholar
Lister, M. L., Aller, M. F., Aller, H. D., et al. 2013, AJ, 146, 120CrossRefGoogle Scholar
Lynden-Bell, D. 1969, Nature, 223, 690Google Scholar
Lynds, C. R. & Villere, G. 1965, ApJ, 142, 1296Google Scholar
Marscher, A. P. 2012, International Journal of Modern Physics Conference Series, 8, 151Google Scholar
Matthews, T. A., Bolton, J. G., Greenstein, J. G., Munch, G., and Sandage, A. H., 107th Meeting of the American Astronomical SocietyGoogle Scholar
Minkowski, R. 1960, ApJ, 132, 908Google Scholar
Padovani, P., Miller, N., Kellermann, K. I., et al. 2011, ApJ, 740, 20Google Scholar
Padovani, P., Bonzini, M., Miller, N., et al. 2014, IAU Symposium 304 pg. 79Google Scholar
Pushkarev, A. B., Kovalev, Y. Y., & Lister, M. L. 2010, ApJL, 722, L7Google Scholar
Seyfert, C. K. 1943, ApJ, 97, 28Google Scholar
Sholomitskii, G. B. 1965, Soviet Astronomy, 9, 516Google Scholar
Zwicky, F. 1965, ApJ, 142, 1293Google Scholar
Zwicky, F. & Zwicky, M. A. 1971, Guemligen: Zwicky, Catalogue of Selected Compact Galaxies and of Post-Eruptive Galaxies pg. xixGoogle Scholar