Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T10:59:20.056Z Has data issue: false hasContentIssue false

Star formation in a high-pressure environment: An SMA view of the dust ridge

Published online by Cambridge University Press:  09 February 2017

Daniel L. Walker
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, IC2, 146 Brownlow Hill, Liverpool, L3 5RFUnited Kingdom email: D.L.Walker@2009.ljmu.ac.uk Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: daniel.walker@cfa.harvard.edu CMZoom: https://www.cfa.harvard.edu/sma/LargeScale/CMZ
CMZoom Survey Group (PIs: Eric Keto & Cara Battersby)
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: daniel.walker@cfa.harvard.edu CMZoom: https://www.cfa.harvard.edu/sma/LargeScale/CMZ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The star formation rate in the Central Molecular Zone is an order of magnitude lower than in the disk of the Galaxy, given the amount of dense gas there. Understanding why star formation is different in this region is crucial if we are to understand the environmental dependence of star formation. Here, we present the detection of high-mass cores in the CMZ’s ‘dust ridge’ that have been discovered with the Submillimeter Array. These cores range in mass from ~ 50 – 1800 M within radii of 0.1 – 0.25 pc. All are young (pre-UCHII), meaning that they are prime candidates for representing the initial conditions of high-mass stars and sub-clusters. We compare these with high-mass cores and clouds in the Galactic disk and find that they are very similar in terms of their masses and sizes, despite being subjected to external pressures that are several magnitudes greater (~ 108 K cm−3). The fact that > 80% of these cores do not show any signs of star-forming activity in such a high-pressure environment leads us to conclude that this is further evidence of the critical density for star formation being heightened in the CMZ due to turbulence.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Field, G. B., Blackman, E. G., & Keto, E. R., 2011, MNRAS 416 710 Google Scholar
Heyer, M., Krawczyk, C., Duval, J. & Jackson, J. M., 2009, ApJ 699 1092 CrossRefGoogle Scholar
Immer, K., Menten, K. M., Schuller, F. & Lis, D. C., 2012, A&A 548 A120 Google Scholar
Jackson, J. M., Rathborne, J. M., Shah, R. Y., et al. 2006, ApJS 163 145 CrossRefGoogle Scholar
Kruijssen, J. M. D., Longmore, S. N., Elmegreen, B. G., et al. 2014, MNRAS 440 3370 CrossRefGoogle Scholar
Lada, C. J., Forbrich, J., Lombardi, M. & Alves, J. F., 2012, ApJ 745 190 Google Scholar
Lis, D. C., Li, Y., Dowell, C. D. & Menten, K. M., 1999, ESA Special Publication, Vol. 427, 627Google Scholar
Longmore, S. N., Kruijssen, J. M. D., Bally, J., et al. 2013b, MNRAS 433 L15 Google Scholar
Longmore, S. N., Kruijssen, J. M. D., Bastian, N., et al. 2014, Protostars and Planets VI, 291–314Google Scholar
Louvet, F., Motte, F., Hennebelle, P., et al. 2014, A&A 570 A15 Google Scholar
Peretto, N., Fuller, G. A., Duarte-Cabral, A., et al. 2013, A&A 555 A112 Google Scholar
Rathborne, J. M., Longmore, S. N., Jackson, J. M., et al. 2014b, ApJ 795 L25 Google Scholar
Reid, M. J., Menten, K. M., Zheng, X. W., et al. 2009, ApJ 700 137 CrossRefGoogle Scholar
Reid, M. J., Menten, K. M., Brunthaler, A., et al. 2014, ApJ 783 130 Google Scholar
Walker, D. L., Longmore, S. N., Bastian, N., et al. 2015, MNRAS 449 715 Google Scholar