Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-25T11:17:12.728Z Has data issue: false hasContentIssue false

The Sun’s polar magnetic field: datasets, proxies and theoretical issues

Published online by Cambridge University Press:  27 November 2018

Arnab Rai Choudhuri*
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore – 560012, India email: arnab@iisc.ac.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The polar magnetic field of the Sun is a manifestation of certain aspects of the dynamo process and is a good precursor for predicting a sunspot cycle before its onset. Although actual synoptic measurements of this field exist only from the mid-1970s, it has now been possible to determine its evolution from the beginning of the twentieth century with the help of various proxies. The recently developed 3D kinematic dynamo model can study the build-up of the Sun’s polar magnetic field more realistically than the earlier surface flux transport model.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Babcock, H. D. 1959, ApJ, 120, 364Google Scholar
Babcock, H. W. 1961, ApJ, 133, 572Google Scholar
Babcock, H. W. & Babcock, H. D. 1955, ApJ, 121, 349Google Scholar
Charbonneau, 2014, ARAA, 52, 251Google Scholar
Choudhuri, A. R. 2003, Solar Phys., 215, 31Google Scholar
Choudhuri, A. R. 2011, Pramana, 77, 77Google Scholar
Choudhuri, A. R. 2014, Indian J. Phys., 88, 877Google Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Phys. Rev. Lett., 98, 131103Google Scholar
Goel, A. & Choudhuri, A. R. 2009, Res. Asron. Astrophys., 9, 115Google Scholar
Hazra, G., Choudhuri, A. R., & Miesch, M. S. 2017, ApJ, 835, 39Google Scholar
Jiang, J., Cameron, R. H., & Schüssler, M. 2014, ApJ, 791, 5Google Scholar
Jiang, J., Cameron, R. H., & Schüssler, M. 2015, ApJ, 808, L28Google Scholar
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, MNRAS, 381, 1527Google Scholar
Karak, B. B. & Miesch, M. 2017, ApJ, 847, 69Google Scholar
Karak, B. B., Jiang, J., Miesch, M. S., Charbonneau, P., & Choudhuri, A. R. 2014, Space Sc. Revs, 186, 561Google Scholar
Leighton, R. B. 1969, ApJ, 156, 1Google Scholar
Longcope, D. & Choudhuri, A. R. 2002, Solar Phys., 205, 63Google Scholar
Makarov, V. I., Tlatov, A. G., Callebaut, D. K., Obridko, V. N., & Shelting, B. D. 2001, Solar Phys., 198, 409Google Scholar
Munoz-Jaramillo, A., Sheeley, N. R., Zhang, J., & DeLuca, E. E. 2012, ApJ, 753, 146Google Scholar
Priyal, M., et al. 2014, ApJ, 793, L4Google Scholar
Schatten, K. 2005, Geophys. Res. Lett., 32, L21106Google Scholar
Sheeley, N. R. 1991, ApJ, 374, 386Google Scholar
Svalgaard, L., Cliver, E. W., & Kamide, Y. 2005, Geophys. Res. Lett., 32, L01104Google Scholar
Tsuneta, S., et al. 2008, ApJ, 689, 1421Google Scholar
Wang, Y.-M., Nash, A. G., & Sheeley, N. R. 1989, ApJ, 347, 529Google Scholar