Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T18:18:38.827Z Has data issue: false hasContentIssue false

Tracing the high energy emission of γ-ray detected radio loud quasars

Published online by Cambridge University Press:  24 March 2015

Giulia Migliori*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA 02138, USA email: gmigliori@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a multiwavelength study of the core and relativistic jet of the radio loud (RL) quasar RGB J1512+020A (z=0.20). We report the discovery of a bright, 13” extended X-ray jet with a short Chandra observation. We discuss the origin of the jet X-ray emission and its properties in comparison with sample of X-ray quasar jets. The broadband core spectrum is contributed by the emission of the central quasar, by a blazar component, responsible for the γ-ray emission detected by Fermi, and by the host galaxy. We model the non-thermal blazar spectral energy distribution (SED) and constrain the total jet power. The jet power inferred from the blazar SED modeling is in agreement with the values obtained from the total radio power, pointing to a jet that efficiently carries its power up to kiloparsec scales. The quasar emission appears intrinsically weak in the optical-UV band. The disk luminosity estimated from the broad emission lines is lower than the jet power, in agreement with recent results from observations and theory.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Ackermann, M., et al. 2011, ApJ, 743, 171CrossRefGoogle Scholar
Baldwin, J. A., et al. 1989, ApJ, 338, 630Google Scholar
Cara, M., et al. 2013, ApJ, 773, 186CrossRefGoogle Scholar
Celotti, A.et al. 1997, MNRAS, 286, 415CrossRefGoogle Scholar
Celotti, A. & Ghisellini, G. 2008, MNRAS, 385, 283Google Scholar
Ghisellini, G. & Tavecchio, F. 2009, MNRAS, 397, 985CrossRefGoogle Scholar
Ghisellini, G., et al. 2014, Nature, 515, 376Google Scholar
Harris, D. E. & Krawczynski, H. 2006, ARA&A, 44, 463Google Scholar
Hogan, B. S., et al. 2011, ApJ, 730, 92Google Scholar
Jester, S., et al. 2007, MNRAS, 380, 828Google Scholar
Mannucci, F., et al. 2001, MNRAS, 326, 745Google Scholar
Marshall, H. L., et al. 2005, ApJS, 156, 13CrossRefGoogle Scholar
Marshall, H. L., et al. 2011, ApJS, 193, 15CrossRefGoogle Scholar
Massaro, F., Harris, D. E., & Cheung, C. C., 2011, ApJS, 197, 24Google Scholar
Miller, B. P., et al.ApJ, 726, 20Google Scholar
Sambruna, R. M., et al. 2004, ApJ, 608, 698Google Scholar
Sambruna, R. M., et al. 2007, ApJ, 670, 74Google Scholar
Sbarrato, T., et al. 2012, MNRAS, 421, 1764Google Scholar
Shen, Y., et al. 2011, ApJS, 194, 45Google Scholar
Siebert, J., et al. 1998, MNRAS, 301, 261Google Scholar
Sikora, M., et al. 2009, ApJ, 704, 38CrossRefGoogle Scholar
Sikora, M. & Begelman, M. C. 2013, ApJL, 764, L24CrossRefGoogle Scholar
Tavecchio, F., et al. 2007, ApJ, 662, 900CrossRefGoogle Scholar
Tchekhovskoy, A., et al. 2011, MNRAS, 418, L79Google Scholar
Vanden Berk, D. E., et al. 2001, AJ, 122, 549Google Scholar
Willott, C. J., et al. 1999, MNRAS, 309, 1017Google Scholar
Wills, D. & Wills, B. J. 1976, ApJS, 31, 143Google Scholar