Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-29T04:35:07.666Z Has data issue: false hasContentIssue false

Turbulence in the diffuse magneto-ionized medium: observational aspects

Published online by Cambridge University Press:  27 October 2016

Marijke Haverkorn*
Affiliation:
Department of Astrophysics/IMAPP, Radboud University P.O.Box 9010, 6500 GL, Nijmegen, the Netherlands email: m.haverkorn@astro.ru.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Turbulence in the interstellar medium is ubiquitous. The turbulent energy density in the gas is significant, and comparable to energy densities of magnetic fields and cosmic rays. Studies of the turbulent interstellar gas in the Milky Way have mostly focused on the neutral gas component, since various spectral lines can give velocity information. Probing turbulent properties in the ionized gas, let alone in magnetic fields, is observationally more difficult. A number of observational methods are discussed below which provide estimates of the maximum scale of fluctuations, the Mach number and other turbulence characteristics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bernardi, G., de Bruyn, A. G., Brentjens, M. A., et al. 2009, A&A, 500, 965 Google Scholar
Brentjens, M. A. & de Bruyn, A. G. 2005, A&A, 441, 1217 Google Scholar
Burkhart, B., Lazarian, A., & Gaensler, B. M. 2012, ApJ, 749, 145 Google Scholar
Cho, J., Lazarian, A., & Vishniac, E. T. 2002, ApJ, 564, 291 Google Scholar
Dagkesamanskii, R. D. & Shutenkov, V. R. 1987, Sov. Astron. Lett., 13, 73 Google Scholar
Gaensler, B. M., Haverkorn, M., Burkhart, B., et al. 2011, Nature, 478, 214 Google Scholar
Gaensler, B. M., Dickey, J. M., McClure-Griffiths, N. M., et al. 2001, ApJ, 549, 959 Google Scholar
Goldreich, P. & Sridhar, S. 1995, ApJ, 438, 763 Google Scholar
Hall, J. S. 1949, Science, 109, 166 Google Scholar
Haverkorn, M., Katgert, P., & de Bruyn, A. G. 2000, A&A 356, L13 Google Scholar
Haverkorn, M., Brown, J. C., Gaensler, B. M., & McClure-Griffiths, N. M., 2008, ApJ, 680, 362 Google Scholar
Hill, A. S., Benjamin, R. A., Kowal, G., et al. 2008, ApJ, 686, 363 CrossRefGoogle Scholar
Hiltner, W. A. 1949, Science, 109, 165 Google Scholar
Iacobelli, M., Haverkorn, M., Orrú, E., et al. 2013, A&A, 558, A72 Google Scholar
Iacobelli, M. 2014, PhD thesis Leiden UniversityGoogle Scholar
Iacobelli, M., Burkhart, B., Haverkorn, M., et al. 2014, A&A, 566, A5 Google Scholar
Kolmogorov, A. N., 1941, Dokl. Akad. Nauk SSSR, 30, 301 Google Scholar
Malkov, M. A., Diamond, P. H., O'C. Drury, L., & Sagdeev, R. Z. 2010, ApJ, 721, 750 Google Scholar
Minter, A. H. & Spangler, S. R. 1997, ApJ, 485, 182 Google Scholar
Oppermann, N., Junklewitz, H., Robbers, G., et al. 2012, A&A, 542, A93 Google Scholar
Simonetti, J. H., Cordes, J. M., & Spangler, S. R. 1984, ApJ, 284, 126 Google Scholar
Stil, J. M., Taylor, A. R., & Sunstrum, C. 2011, ApJ, 726, 4 Google Scholar
Zweibel, E. G. & Heiles, C. 1997, Nature, 385, 131 Google Scholar