Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-03T08:37:18.302Z Has data issue: false hasContentIssue false

Two-temperature Debris Disks: Signposts for Directly Imaged Planets?

Published online by Cambridge University Press:  27 January 2016

Grant M. Kennedy
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK email: gkennedy@ast.cam.ac.uk
Mark C. Wyatt
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK email: gkennedy@ast.cam.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work considers debris disks whose spectra can be modelled by dust emission at two different temperatures. These disks are typically assumed to be a sign of multiple belts, but only a few cases have been confirmed via high resolution observations. We derive the properties of a sample of two-temperature disks, and explore whether this emission can arise from dust in a single narrow belt. While some two-temperature disks arise from single belts, it is probable that most have multiple spatial components. These disks are plausibly similar to the outer Solar System's configuration of Asteroid and Edgeworth-Kuiper belts separated by giant planets. Alternatively, the inner component could arise from inward scattering of material from the outer belt, again due to intervening planets. For either scenario, the ratio of warm/cool component temperatures is indicative of the scale of outer planetary systems, which typically span a factor of about ten in radius.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bonsor, A. & Wyatt, M. C. 2012, MNRAS, 420, 2990Google Scholar
Chen, C. H., Sheehan, P., Watson, D. M., Manoj, P., & Najita, J. R. 2009, ApJ, 701, 1367CrossRefGoogle Scholar
Kalas, P., Graham, J. R., & Clampin, M. 2005, Nature, 435, 1067Google Scholar
Kennedy, G. M. & Wyatt, M. C. 2014, MNRAS, 444, 3164CrossRefGoogle Scholar
Lebreton, J., Augereau, J.-C., Thi, W.-F., Roberge, A., Donaldson, J., Schneider, G., Maddison, S. T., Ménard, F., Riviere-Marichalar, P., Mathews, G. S., Kamp, I., Pinte, C., Dent, W. R. F., Barrado, D., Duchêne, G., Gonzalez, J.-F., Grady, C. A., Meeus, G., Pantin, E., Williams, J. P., & Woitke, P. 2012, A & A, 539, A17CrossRefGoogle Scholar
Moór, A., Ábrahám, P., Kóspál, Á., Szabó, G. M., Apai, D., Balog, Z., Csengeri, T., Grady, C., Henning, T., Juhász, A., Kiss, C., Pascucci, I., Szulágyi, J., & Vavrek, R. 2013, ApJ, 775, L51Google Scholar
Morales, F. Y., Rieke, G. H., Werner, M. W., Bryden, G., Stapelfeldt, K. R., & Su, K. Y. L. 2011, ApJ, 730, L29CrossRefGoogle Scholar
Rameau, J., Chauvin, G., Lagrange, A.-M., Meshkat, T., Boccaletti, A., Quanz, S. P., Currie, T., Mawet, D., Girard, J. H., Bonnefoy, M., & Kenworthy, M. 2013, ApJ, 779, L26Google Scholar
Su, K. Y. L., Rieke, G. H., Stapelfeldt, K. R., Malhotra, R., Bryden, G., Smith, P. S., Misselt, K. A., Moro-Martin, A., & Williams, J. P. 2009, ApJ, 705, 314Google Scholar