Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T14:03:22.784Z Has data issue: false hasContentIssue false

Type Ia Progenitor Hunt in Ancient Remnants

Published online by Cambridge University Press:  17 January 2013

Wolfgang E. Kerzendorf*
Affiliation:
Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611, Australia email: wkerzend@mso.anu.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is broad agreement that the stars which explode as Type Ia supernovae are white dwarfs. They have accreted material in a binary system until they are near the Chandrasekhar mass and detonate/deflagrate. The two main scenarios for this accretion process are merging with a companion white dwarf (double degenerate scenario), or accretion from a main-sequence to red giant donor (single degenerate scenario). The donor star survives post-explosion and would provide substantial evidence for the single degenerate scenario, if found. Our team is analyzing stars in close proximity to Galactic Type Ia remnants to find surviving donor stars. In my talk I will introduce the different progenitor systems and the expected state for a donor star today. I will outline our search using high resolution spectroscopy and will present updated results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Badenes, C., Borkowski, K. J., Hughes, J. P., Hwang, U., & Bravo, E. 2006, ApJ, 645, 1373, arXiv:astro-ph/0511140Google Scholar
Canal, R., Méndez, J., & Ruiz-Lapuente, P. 2001, ApJ (Letters), 550, L53Google Scholar
Chiotellis, A., Schure, K. M., & Vink, J. 2011, ArXiv e-prints, 1103.5487Google Scholar
González Hernández, J. I., Ruiz-Lapuente, P., Filippenko, A. V., Foley, R. J., Gal-Yam, A., & Simon, J. D. 2009, ApJ, 691, 1, 0809.0601Google Scholar
Han, Z. 2008, ApJ (Letters), 677, L109, 0803.1986CrossRefGoogle Scholar
Kerzendorf, W. E., Schmidt, B. P., Asplund, M., Nomoto, K., Podsiadlowski, P., Frebel, A., Fesen, R. A., & Yong, D. 2009, ApJ, 701, 1665, 0906.0982Google Scholar
Kerzendorf, W. E., Schmidt, B. P., Laird, J. B., Carney, B. W., Podsiadlowski, P., & Bessell, M. S. 2012a, in prep.Google Scholar
Kerzendorf, W. E., et al. 2012b, in prep.Google Scholar
Krause, O., Tanaka, M., Usuda, T., Hattori, T., Goto, M., Birkmann, S., & Nomoto, K. 2008, Nature, 456, 617Google Scholar
Marietta, E., Burrows, A., & Fryxell, B. 2000, ApJS, 128, 615Google Scholar
Pakmor, R., Röpke, F. K., Weiss, A., & Hillebrandt, W. 2008, A&A, 489, 943, 0807.3331Google Scholar
Rest, A., et al. 2008, ApJ (Letters), 681, L81, 0805.4607Google Scholar
Reynolds, S. P., Borkowski, K. J., Hwang, U., Hughes, J. P., Badenes, C., Laming, J. M., & Blondin, J. M. 2007, ApJ (Letters), 668, L135, 0708.3858Google Scholar
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523Google Scholar
Roeser, S., Demleitner, M., & Schilbach, E. 2010, AJ, 139, 2440, 1003.5852Google Scholar
Ruiz-Lapuente, P. 2004, ApJ, 612, 357CrossRefGoogle Scholar
Ruiz-Lapuente, P., et al. 2004, Nature, 431, 1069CrossRefGoogle Scholar