Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T11:49:41.697Z Has data issue: false hasContentIssue false

Variational Chaos Indicators: Application to the Restricted Three-Body Problem

Published online by Cambridge University Press:  05 January 2015

Alexey M. Koksin
Affiliation:
Tomsk State University, 634050 Tomsk, Russia email: shefer@niipmm.tsu.ru
Vladimir A. Shefer
Affiliation:
Tomsk State University, 634050 Tomsk, Russia email: shefer@niipmm.tsu.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A comparison of several known dynamical indicators of chaos based on the numerical integration of differential variational equations is performed. The comparison is implemented on the examples of studying dynamics in the planar circular restricted three-body problem.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Cincotta, P. M., Simo, C. 2000, Astron. Astrophys. Suppl. Ser., 147, 205Google Scholar
Fouchard, M., Lega, E., Froeschlé, Ch., & Froeschlé, C. 2002, Celest. Mech. Dyn. Astr., 83, 205Google Scholar
Froeschlé, C., Lega, E., & Gonczi, R. 1997, Celest. Mech. Dyn. Astr., 67, 41Google Scholar
Frouard, J., Fouchard, M., & Vienne, A. 2008, SF2A–2008, 121Google Scholar
Hairer, E., Norsett, S. P., & Wanner, G. 1987, Solving Ordinary Differential Equations. Nonstiff Problems (Berlin, Heidelberg: Springer–Verlag)Google Scholar
Lukes-Gerakopoulos, G., Voglis, N., & Efthymiopoulos, C. 2008, Physica A, 387, 1907CrossRefGoogle Scholar
Morais, M. H. M. & Giuppone, C. A. 2012, MNRAS, 424, 52Google Scholar
Shefer, V. A. & Koksin, A. M. 2013, Izv. Vusov. Fizika 56 No.6/3, 256Google Scholar
Skokos, Ch. 2001, J. Phys. A, 34, 10029CrossRefGoogle Scholar
Szebehely, V. 1967, Theory of Orbits (New York: Academic Press)Google Scholar