Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T15:19:45.448Z Has data issue: false hasContentIssue false

Finite subgroups of F4([Copf ]) and E6([Copf ])

Published online by Cambridge University Press:  01 January 1997

AM Cohen
Affiliation:
Technische Universiteit Eindhoven, Faculteit voor Wiskunde en Informatica, PO Box 513, 5600 MB Eindhoven, The Netherlands. Email: amc@win.tue.nl
DB Wales
Affiliation:
Sloan Laboratory, California Institute of Technology, Pasadena, CA 91125, USA. Email: dbw@caltech.edu
Get access

Abstract

The isomorphism types of finite Lie primitive subgroups of the complex Lie groups $E_{6} ( \C )$ and $F_4 ( \C )$ are determined. Here, we call a finite subgroup of a complex Lie group $G$ {\sl Lie primitive\/} if it is not contained in a proper closed subgroup of $G$ of positive dimension. Induction can be used to investigate subgroups which are not Lie primitive. Some additional information is provided, such as the characters of these finite subgroups on some small-dimensional modules for the Lie groups.

In studying these groups, we mainly use two rational linear representations of the universal covering group $\widetilde E$ of $E_6(\C)$, namely a 27-dimensional module (there are two inequivalent ones), denoted by $\K$, and the adjoint module. In particular, we make heavy use of the characters of $\widetilde E$ on these modules. The group $F_4(\C)$ occurs in $\widetilde E$ as the stabilizer subgroup of a vector in $\K$. The finite simple groups of which a perfect central extension occurs in $F_4(\C)$ or $E_6(\C)$ are:

via $G_2$: $Alt_5$, $Alt_6$, $L(2,7)$, $L(2,8)$, $L(2,13)$, $U(3,3)$,

via $F_4$: $Alt_7$, $Alt_8$, $Alt_9$, $L(2,17)$, $L(2,25)$, $L(2,27)$, $L(3,3)$, ${}^3D_4(2)$, $U(4,2)$, $O(7,2)$, $O^{+}(8,2)$,

via $E_6$: $Alt_{10}$, $Alt_{11}$, $L ( 2 , 11)$, $L(2,19)$, $L(3,4)$, $U(4,3)$, ${}^2F_4(2)'$, $M_{11}$, $J_2$.

This list has been found using the classification of the finite simple groups. On the basis of this list, the finite Lie primitive subgroups are found to be either the normalizers of one of these subgroups or of one of the two elementary abelian $3$-groups found by Alekseevskii.

1991 Mathematics Subject Classification: 20K47, 20G40, 17B45, 20C10.

Type
Research Article
Copyright
London Mathematical Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)