Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-02T18:41:17.047Z Has data issue: false hasContentIssue false

Facilitative glucose transporters in ruminants

Published online by Cambridge University Press:  11 October 2007

Jean-François Hocquette
Affiliation:
Laboratoire Croissance et Métabolismes des Herbivores et, INRA, Theix, 63122, Saint-Genès Champanelle, France
Michele Balage
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, INRA, Theix, 63122, Saint-Genès Champanelle, France
Pascal Ferré
Affiliation:
INSERM U342, Hôpital Saint Vincent de Paul, 75014, Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Glucose transporters in the control of metabolism’
Copyright
Copyright © The Nutrition Society 1996

References

Abe, H., Moritmatsu, M., Aso, H., Shimizu, Y., Nikami, H., Kosaka, K., Syuto, B. & Saito, M. (1994). Tissue distribution of major insulin-responsive glucose transporter (GLUT4) protein in cattle. Proceedings of the Society of Nutrition Physiology 3, 214.Google Scholar
Abe, H., Moritmatsu, M., Nikami, H., Miyashige, T. & Saito, M. (1995). Molecular cloning and tissue distribution of bovine insulin-responsive glucose transporter (GLUT4). IVth International Symposium on the Nutrition of Herbivores,Clermont-Ferrand,France,11–15 September 1995.Google Scholar
Arai, T., Washizu, T., Sagara, M., Sako, T., Nigi, H., Matsumoto, H., Sasaki, M. & Tomoda, I. (1995). D-Glucose transport and glycolytic enzyme activities in erythrocytes of dogs, pigs, cats, horses, cattle and sheep. Research in Veterinary Science 58, 195196.CrossRefGoogle ScholarPubMed
Arai, T., Washizu, T., Sako, T., Sasaki, M. & Motoyoshi, S. (1992). D-Glucose transport activities in erythrocytes and hepatocytes of dogs, cats and cattle. Comparative Biochemistry and Physiology 102A, 285287.CrossRefGoogle Scholar
Balage, M., Hocquette, J. F., Graulet, B., Ferré, P. & Grizard, J. (1994). Insulin-regulatable glucose transporters in skeletal muscles from dry and lactating goats. In Energy Metabolism of Farm Animals 123 [Aguilera, J. F. editor]. Granada, Spain: Consejo Superior de Investigaciones Cientificas.Google Scholar
Balage, M., Sornet, C. & Grizard, J. (1992). Insulin receptor binding and kinase activity in liver and skeletal muscles of lactating goats. American Journal of Physiology 262, E561E568.Google ScholarPubMed
Boado, R. J. & Pardridge, W. M. (1992). Complete protection of antisense oligonucleotides against serum nuclease degradation by an avidin-biotin system. Bioconjugate Chemistry 3, 519523.CrossRefGoogle ScholarPubMed
Boado, R. J., Wang, L. & Pardridge, W. M. (1994). Enhanced expression of the blood-brain barrier GLUT1 glucose transporter gene by brain-derived factors. Molecular Brain Research 22, 259267.CrossRefGoogle ScholarPubMed
Brockman, R. P. (1993). Glucose and short-chain fatty acid metabolism. In Quantitative Aspects of Ruminants Digestion and Metabolism 249265 [Forbes, J. M. & France, J. editors]. Wallingford: CAB International.Google Scholar
Brockman, R. P. & Laarveld, B. (1986). Hormonal regulation of metabolism in ruminants: a review. Livestock Production Science 14, 313334.CrossRefGoogle Scholar
Burnol, A. F., Leturque, A., Ferré, P., Kande, J. & Girard, I. (1986). Increased insulin sensitivity and responsiveness during lactation in rats. American Journal of Physiology 251, E537E541.Google ScholarPubMed
Castiglia-Delavaud, C., Hocquette, J. F., Graulet, B., Bornes, F., Lepetit, N. & Ferré, P. (1996). Insulin-sensitive glucose transporter (GLUT4) transcript levels in calf muscles assessed with a bovine GLUT4 cDNA fragment. The International Journal of Biochemistry and Cell Biology (in the Press).Google Scholar
Debras, E., Grizard, J., Aina, E., Tesseraud, S., Champredon, C. & Arnal, M. (1989). Insulin sensitivity and responsiveness during lactation and dry period in goats. American Journal of Physiology 256, E295E302.Google ScholarPubMed
Dohm, G. L., Tapscott, E. B., Pories, W. J., Dabbs, D. J., Flickinger, E. G., Meelheim, D., Fushiki, T., Atkinson, S. M., Elton, C. W. & Caro, J. F. (1988). An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. Journal of Clinical investigation 82, 486494.CrossRefGoogle Scholar
Elbrink, J. & Bihler, I. (1975). Membrane transport: its relation to cellular metabolic rates. Glucose transport into animal cells is adapted to their metabolic rate and often controls rates of glucose use. Science 188, 11771184.CrossRefGoogle Scholar
Garvey, W. T. (1994). GLUT-4 glucose transporters and insulin action in humans. In Molecular Biology of Diabetes part 2, 437471 [Draznin, B. and Le Roith, D. editors]. Totowa, NJ: Humana Press Inc..Google Scholar
Gero, A. M., Wood, A. M., Hogue, D. L. & Upston, J. M. (1991). Effect of diamide on nucleoside and glucose transport in Pleasmodium falciparum and Babesia bovis infected erythrocytes. Molecular and Biochemical Parasitology 44, 195206.CrossRefGoogle ScholarPubMed
Girard, J., Ferré, P., Pegorier, J. P. & Duee, P. H. (1992). Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiological Reviews 72, 507562.CrossRefGoogle ScholarPubMed
Gould, G. W. & Holman, G. D. (1993). The glucose transporter family: structure, function and tissue-specific expression. Biochemical Journal 295, 329341.CrossRefGoogle ScholarPubMed
Gulve, E. A., Ren, J. M., Marshall, B. A., Gao, J. P., Hansen, P. A., Holloszy, J. O. & Mueckler, M. (1994). Glucose transport activity in skeletal muscles from transgenic mice overexpressing GLUTl-increased basal transport is associated with a defective response to diverse stimuli that activate GLUT4. Journal of Biological Chemistry 269, 1836618370.CrossRefGoogle ScholarPubMed
Hasegawa, H., Matsumija, S., Murakami, C., Kurokawa, T., Kasai, R., Ishibashi, S. & Yamasaki, K. (1994). Interactions of ginseng extract separated fractions, and some triterpenoid saponins with glucose transporters in sheep erythrocytes. Planta Medica 60, 153157.CrossRefGoogle ScholarPubMed
Henriksen, E. J., Bourey, R. E., Rodnick, K. J., Koranyi, L., Permutt, M. A. & Holloszy, J. O. (1990). Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. American Journal of Physiology 259, E593E598.Google ScholarPubMed
Hickey, M. S., Carey, J. O., Azevedo, J. L., Houmard, J. A., Pories, W. J., Israel, R. G. & Dohm, G. L. (1995). Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. American Journal of Physiology 268, E453E457.Google ScholarPubMed
Hocquette, J. F., Bornes, F., Balage, M., Ferré, P., Grizard, J. & Vermorel, M. (1995). Glucose-transporter (GLUT4) protein content in oxidative and glycolytic skeletal muscles from calf and goat. Biochemical Journal 305, 465470.CrossRefGoogle ScholarPubMed
Hocquette, J. F., Bornes, F., Graulet, B., Dardevet, D., Vermorel, M., Geay, Y. & Ferré, P. (1994). Nutritional regulation of insulin regulatable glucose-transporter in bovine muscle. Reproduction Nutrition Development 34, 628629.CrossRefGoogle Scholar
Hocquette, J. F., Castiglia, C., Ferre, P. & Vermorel, M. (1996a). Variations in GLUT4 protein content among bovine adipose tissues. Proceedings of the Nutrition Society 55, 21A.Google Scholar
Hocquette, J. F., Graulet, B., Castiglia-Delavaud, C., Bornes, F., Lepetit, N. & Ferré, P. (1996b). Insulin-sensitive glucose transporter (GLUT4) transcript levels in calf muscles assessed with a bovine GLUT4 cDNA fragment. The International Journal of Biochemistry and Cell Biology (in the Press).CrossRefGoogle ScholarPubMed
Hoos, R. T., Tarpley, H. L. & Regen, D. M. (1972). Sugar transport in beef erythrocytes. Biochimica et Biophysica Acta 266, 174181.CrossRefGoogle ScholarPubMed
Hostettler-Allen, R. L., Tappy, L. & Blum, J. W. (1994). Insulin resistance, hyperglycemia, and glucosuria in intensively milk-fed calves. Journal of Animal Science 72, 160173.CrossRefGoogle ScholarPubMed
Hsu, S. C. & Molday, R. S. (1991). Glycolytic enzymes and a GLUT1 glucose transporter in the outer segments of rod and cone photoreceptor cells. Journal of Biological Chemistry 266, 2174521752.CrossRefGoogle Scholar
Hsu, S. C. & Molday, R. S. (1994). Glucose metabolism in photoreceptor outer segments. Its role in phoiotransduction and in NADPH-requiring reactions. Journal of Biological Chemistry 269, 1795417959.CrossRefGoogle ScholarPubMed
Hugi, D. P. & Blum, J. W. (1994). Insulin resistance, hyperglycemia and glucosuria in veal calves: age dependency and effects of lactose supply. Proceedings of the Society of Nutrition Physiology 3, 297.Google Scholar
James, D. E., Strube, M. & Mueckler, M. (1989). Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338, 8387.CrossRefGoogle ScholarPubMed
Kaiser, N., Sasson, S., Feener, E. P., Boukobzavardi, N., Higashi, S., Moller, D. E., Davianeiser, S., Przybylski, R. J. & King, G. L. (1993). Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42, 8089.CrossRefGoogle ScholarPubMed
Klip, A., Tsakiridis, T., Marette, A. & Ortiz, P. A. (1994). Regulation of expression of glucose transporters by glucose-A review of studies In vivo and in cell cultures. FASEB Journal 8, 4353.CrossRefGoogle ScholarPubMed
Knott, R. M., Robertson, M. & Forrester, J. V. (1993). Regulation of glucose transporter (GLUT3) and aldose reductase messenger RNA in bovine retinal endothelial cells and retinal pericytes in high glucose and high galactose culture. Diabetologia 36, 808812.CrossRefGoogle ScholarPubMed
Kumagai, A. K., Dwyer, K. J. & Pardridge, W. M. (1994). Differential glyeosylation of the GLLT1 glucose transporter in brain capillaries and choroid plexus. Biochimica et Biophysica Acta 1193, 2430.CrossRefGoogle Scholar
Lescale-Matys, L., Dyer, J., Scott, D., Freeman, T. C., Wright, E. M., Shirazi-Beechey, S. P. (1993). Regulation of the ovine intestinal Na+/glucose co-transporter (SLGT1) is dissociated from mRNA abundance. Biochemical Journal 291, 435440.CrossRefGoogle Scholar
Li, X. B., Szerencsei, R. T. & Schnetkamp, P. P. M. (1994). The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods. Experimental Eye Research 59, 351358.CrossRefGoogle ScholarPubMed
Lin, S., Snyder, C. E. Jr (1977). High affinity cytochalasin B binding sites to red cell membrane proteins which are unrelated to sugar transport. Journal of Biological Chemistry 252, 54645471.CrossRefGoogle ScholarPubMed
Liu, M. L., Gibbs, E. M., McCoid, S. C., Milici, A. J., Stukenbrok, H. A., McPherson, R. K., Treadway, J. L. & Pessin, J. E. (1993). Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proceedings of the National Academy of Sciences, USA 90, 1134611350.CrossRefGoogle ScholarPubMed
Liu, M. L., Olson, A. L., Moye-Rowley, W. S., Buse, J. B., Bell, G. I. & Pessin, J. E. (1992). Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. Journal of Biological Chemistry 267, 1167311676.CrossRefGoogle ScholarPubMed
Loike, J. D., Cao, L., Brett, J., Ogawa, S., Silverstein, S. C. & Stern, D. (1992). Hypoxia induces glucose transporter expression in endothelial cells. American Journal of Physiology 263, C326C333.CrossRefGoogle ScholarPubMed
Lopez-Escalera, R., Li, X. B., Szerencsei, R. T. & Schnetkamp, P. P. M. (1991). Glycolysis and glucose uptake in intact outer segments isolated from bovine retinal rods. Biochemistry 30, 89708976.CrossRefGoogle ScholarPubMed
McVeigh, J. M. & Tarrant, P. V. (1982). Behavioral stress and skeletal muscle glycogen metabolism in young bulls. Journal of Animal Science 54, 790795.CrossRefGoogle ScholarPubMed
Mandarino, L. J., Finlayson, J. & Hassell, J. R. (1994). High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Investigative Ophthalmology and Visual Science 35, 964972.Google Scholar
Olson, A. L., Liu, M. L., Moye-Rowley, W. S., Buse, J. B., Bell, G. I. & Pessin, J. E. (1993). Hormonal/metabolic regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. Journal of Biological Chemistry 268, 98399846.CrossRefGoogle ScholarPubMed
Pappenheimer, J. R. & Setchell, B. P. (1973). Cerebral glucose transport and oxygen consumption in sheep and rabbits. Journal of Physiology 233, 529551.CrossRefGoogle ScholarPubMed
Pardridge, W. M. & Boado, R. J. (1993). Molecular cloning and regulation of gene expression of blood-brain barrier glucose transporter. In The Blood-Brain Barrier 395440 [Pardridge, W. M. editor]. New York: Raven Press Ltd..Google ScholarPubMed
Pell, J. M. & Bergman, E. N. (1983). Cerebral metabolism of amino acids and glucose in fed and fasted sheep. American Journal of Physiology 244, E282E289.Google ScholarPubMed
Pethick, D. W. (1984). Energy metabolism of skeletal muscle. In Ruminant Physiology. Concepts and Consequences 277287 [Gawthorne, J. M., Baker, S. K., MacKintosh, J. B. & Purser, D. B. editors]. Nedlands: University of Western Australia.Google Scholar
Pethick, D. W. (1993). Carbohydrate and lipid oxidation during exercise. Australian Journal of Agricultural Research 44, 431441.CrossRefGoogle Scholar
Picard, B., Hocquette, J. F., Bornes, F., Brazi, S., Vermorel, M. & Geay, Y. (1994). Muscle metabolism in normal and double-muscled calves: fiber characteristics and glucose transport rate. In Energy Metabolism of Farm Animals 97100 [Aguilera, J. F. editor]. Granada, Spain: Consejo Superior de Investigaciones Cientificas.Google Scholar
Prior, R. L., Huntington, G. B. & Reynolds, P. J. (1984). Role of insulin and glucose on metabolite uptake by the hind half of beef steers. Journal of Animal Science 58, 14461453.CrossRefGoogle ScholarPubMed
Pursel, V. G., Rexroad, C. E. Jr (1993). Status of research with transgenic farm animals. Journal of Animal Science 71, Suppl. 3 1019.CrossRefGoogle ScholarPubMed
Ren, J. M., Marshall, B. A., Gulve, E. A., Gao, J. P., Johnson, D. W., Holloszy, J. O. & Mueckler, M. (1993). Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. Journal of Biological Chemistry 268, 1611316115.CrossRefGoogle ScholarPubMed
Rizza, R. A., Mandarine, L. J. & Gerich, J. E. (1981). Dose-response characteristics for effects of insulin on production and utilization of glucose in man. American Journal of Physiology 240, E630E639.Google ScholarPubMed
Robbins, J. D., Appel, N. M., Laurenza, A., Simpson, I. A., Desouza, E. B. & Seamon, K. B. (1992). Differential identification and localization of adenylyl cyclase and glucose transporter in brain using iodinated derivatives of forskolin. Brain Research 581, 148152.CrossRefGoogle ScholarPubMed
Roehrig, K., Nestor, K. E. Jr & Palmquist, D. L. (1988). ATP citrate lysase activity in liver and adipose tissue of veal or ruminating calves. (Bos taurus). Comparative Biochemistry and Physiology 90B, 147149.Google Scholar
Sano, H., Nakai, M., Kondo, T. & Terashima, Y. (1991). Insulin responsiveness to glucose and tissue responsiveness to insulin in lactating, pregnant, and nonpregnant, nonlactating beef cows. Journal of Animal Science 69, 11221127.CrossRefGoogle ScholarPubMed
Sasaki, S. (1990). Mechanism of insulin resistance in the post receptor events in sheep. Hormone Metabolic Research 22, 457461.CrossRefGoogle ScholarPubMed
Schultz, G. A., Hogan, A., Watson, A. J., Smith, R. M. & Heyner, S. (1992). Insulin, insulin-like growth factors and glucose transporters: temporal patterns of gene expression in early murine and bovine embryos. Reproduction Nutrition and Fertility 4, 361371.CrossRefGoogle ScholarPubMed
Simpson, I. A., Vannucci, S. J. & Maher, F. (1994). Glucose transporters in mammalian brain. Biochemical Society Transactions 22, 671675.CrossRefGoogle ScholarPubMed
Swinburn, B. A., Nyomba, B. L., Saad, M. F., Zurio, F., Raz, I., Knowler, W. C., Lillioja, S., Bogardus, C. & Ravussin, E. (1991). Insulin resistance associated with lower rates of weight gain in Pima indians. Journal of Clinical Investigation 88, 168173.CrossRefGoogle ScholarPubMed
Takata, K., Kasahara, M., Oka, Y. & Hirano, H. (1993). Mammalian sugar transporters-their localization and link to cellular functions. Acta Histochemica et Cytochemica 26, 165178.CrossRefGoogle Scholar
Trayhurn, P., Thomas, M. E. A. & Keith, J. S. (1993). Postnatal development of uncoupling protein, uncoupling protein messenger RNA, and GLUT4 in adipose tissues of goats. American Journal of Physiology 265, R676R682.Google ScholarPubMed
Vernon, R. G., Faulkner, A., Finley, E., Pollock, H. & Taylor, E. (1987). Enzymes of glucose and fatty acid metabolism of liver, kidney, skeletal muscle, adipose tissue and mammary gland of lactating and non-lactating sheep. Journal of Animal Science 64, 13951411.CrossRefGoogle ScholarPubMed
Wheeler, T. J. & Hauck, M. A. (1985). Reconstitution of the glucose transporter from bovine heart. Biochimica et Biophysica Acta 818, 171182.CrossRefGoogle ScholarPubMed
Zhao, F. Q., Glimm, D. R. & Kennelly, J. J. (1993). Distribution of mammalian facilitative glucose transporter messenger RNA in bovine tissues. International Journal of Biochemistry 25, 18971903.CrossRefGoogle ScholarPubMed
Ziel, F. H., Venkatesan, N. & Davidson, M. B. (1988). Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes 37, 885890.CrossRefGoogle ScholarPubMed