Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T22:23:54.307Z Has data issue: false hasContentIssue false

Intracellular calcium, cell injury and relationships to free radicals and fatty acid metabolism

Published online by Cambridge University Press:  28 February 2007

M. J. Jackson
Affiliation:
Department of Medicine, University of Liverpool, P. O. Box 147, Liverpool L69 3BX
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Intracellular Calcium in the Control of Metabolism’
Copyright
Copyright © The Nutrition Society 1990

References

Allshire, A., Piper, H. M., Cuthbertson, K. S. R. & Cobbold, P. H. (1987). Cytosolic free Ca2+ in single heart cells during anoxia and reoxygenation. Biochemical Journal 244, 381385.CrossRefGoogle ScholarPubMed
Anand, R. & Emery, A. E. H. (1980). Calcium stimulated enzyme efflux from human skeletal muscle. Research Communications in Chemical Pathology and Pharmacology 28, 541550.Google ScholarPubMed
Anand, R. & Emery, A. E. H. (1982). Verapamil and calcium-stimulated enzyme efflux from skeletal muscle. Clinical Chemistry 28, 14821484.CrossRefGoogle ScholarPubMed
Brady, P. S., Brady, L. J. & Ullrey, D. E. (1979). Selenium, vitamin E and the response to swimming stress in the rat. Journal of Nutrition 109, 11031109.CrossRefGoogle ScholarPubMed
Claremont, D., Jackson, M. J. & Jones, D. A. (1984). Accumulation of calcium in experimentally damaged mouse muscles. Journal of Physiology 353, 57P.Google Scholar
Davies, K. J. A., Quintanilha, A. T., Brooks, G. A. & Packer, L. (1982). Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications 107, 11981205.CrossRefGoogle ScholarPubMed
Dillard, C. J., Litov, R. E., Savin, W. M., Dunelin, E. E. & Tappel, A. L. (1978). Effects of exercise, vitamin E and ozone on pulmonary function and lipid peroxidation. Journal of Applied Physiology 45, 927932.CrossRefGoogle ScholarPubMed
Duncan, C. J. & Jackson, M. J. (1987). Different mechanisms mediate structural changes and intracellular enzyme efflux following damage to skeletal muscle. Journal of Cell Science 87, 183188.CrossRefGoogle ScholarPubMed
Duncan, C. J., Smith, J. L. & Greenaway, H. C. (1979). Failure to protect frog skeletal muscle from ionophore-induced damage by the use of the protease inhibitor leupeptin. Comparative Biochemistry and Physiology 63C, 205207.Google ScholarPubMed
Ferrari, R., Ceconi, C., Curello, S., Cragnoni, A., Agnoletti, G., Bossa, G. M. & Visioli, O. (1986). Intracellular effects of myocardial ischaemia and reperfusion: role of calcium and oxygen. European Heart Journal 7, Suppl. A, 312.Google ScholarPubMed
Gee, D. L. & Tappel, A. L. (1981). The effect of exhaustive exercise on expired pantane as a measure of ‘invivo’ lipid peroxidation in the rat. Life Sciences 28, 24252429.CrossRefGoogle Scholar
Godwin, K. O., Edwardly, J. & Fuss, C. N. (1975). Retention of 45Ca in rats and lambs associated with the onset of nutritional muscular dystrophy. Australian Journal of Biological Science 28, 457460.CrossRefGoogle ScholarPubMed
Jackson, M. J. (1987). Muscle damage during exercise - possible role of free radicals and protective effect of vitamin E. Proceedings of the Nutrition Society 46, 7780.CrossRefGoogle ScholarPubMed
Jackson, M. J., Brooke, M. H. & Kaiser, K. (1990). ‘In vitro’ measurement of CK release from Duchenne muscle. Neurology (In the Press).Google Scholar
Jackson, M. J., Edwards, R. H. T. & Symons, M. C. R. (1985). Electron spin resonance studies of intact mammalian skeletal muscle. Biochemica et Biophysica Acta 847, 185190.CrossRefGoogle ScholarPubMed
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1983). Vitamin E and skeletal muscle. In Ciba Foundation Symposium no. 101: Biology of Vitamin E, pp. 224239. London: Pitman.CrossRefGoogle Scholar
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1984). Experimental skeletal muscle damage: the nature of the calcium-activated degenerative processes. Journal of Clinical Investigation 14, 369374.CrossRefGoogle ScholarPubMed
Jackson, M. J., Lowe, N. & Edwards, R. H. T. (1990). Glutathione release from skeletal muscle during experimental damage. Clinical Science (In the Press).Google Scholar
Jackson, M. J., Roberts, J. & Edwards, R. H. T. (1988). Effects of dietary fish oil feeding on muscle growth and damage in the rat. British Journal of Nutrition 60, 217224.CrossRefGoogle ScholarPubMed
Jackson, M. J., Wagenmakers, A. J. M. & Edwards, R. H. T. (1987). The effect of inhibitors of arachidonic acid metabolism on efflux of intracellular enzymes from skeletal muscle following experimental damage. Biochemical Journal 241, 403407.CrossRefGoogle ScholarPubMed
Johnson, K., Sutcliffe, L., Edwards, R. H. T. & Jackson, M. J. (1988). Calcium ionophore enhances the electron spin responance signal from isolated skeletal muscle. Biochemica et Biophysica Acta 964, 285288.CrossRefGoogle Scholar
Jones, D. A., Jackson, M. J. & Edwards, R. H. T. (1983). The release of intracellular enzymes from an isolated mammalian skeletal muscle preparation. Clinical Science 65, 193201.CrossRefGoogle ScholarPubMed
Jones, D. A., Jackson, M. J., McPhail, G. & Edwards, R. H. T. (1984). Experimental muscle damage: the importance of external calcium. Clinical Science 66, 317322.CrossRefGoogle ScholarPubMed
Nayler, W. G., Poole-Wilson, P. A. & Williams, A. (1979). Hypoxia and calcium. Journal of Molecular and Cellular Cardiology 11, 683706.CrossRefGoogle ScholarPubMed
Palmieri, G. M. A., Nutting, D. F., Bhattacharya, S. K., Bertorini, T. E. & Williams, J. C. (1981). Parathyroid ablation in dystrophic hamsters. Journal of Clinical Investigation 68, 646654.CrossRefGoogle ScholarPubMed
Phoenix, J., Edwards, R. H. T. & Jackson, M. J. (1989). Inhibition of calcium-induced cytosolic enzyme efflux from skeletal muscle by vitamin E and related compounds. Biochemical Journal 287, 207231.CrossRefGoogle Scholar
Schanne, F. X., Kane, A. B., Young, A. B. & Forber, J. L. (1979). Calcium dependence of toxic cell death: a final common pathway. Science 206, 700701.CrossRefGoogle ScholarPubMed
Smith, M. T., Thor, H. & Orrenius, S. (1981). Toxic injury to isolated hepatocytes is not dependent on extracellular calcium. Science 231, 12571259.CrossRefGoogle Scholar
Soybell, D., Morgan, J. & Cohen, L. (1978). Calcium augmentation of enzyme leakage from mouse skeletal muscle and its possible site of action. Research Communications in Chemical Pathology and Pharmacology 20, 317329.Google Scholar
Turner, P. R., Westwood, T., Regen, C. M. & Steinhardt, R. A. (1988). Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335, 735738.CrossRefGoogle ScholarPubMed
Wrogemann, K. & Pena, S. J. G. (1976). Mitochondrial overload - a general mechanism for cell necrosis in muscle diseases. Lancet ii, 672674.CrossRefGoogle Scholar