Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-14T17:26:15.487Z Has data issue: false hasContentIssue false

Molecular biology and vitamin D function

Published online by Cambridge University Press:  28 February 2007

D. E. M. Lawson
Affiliation:
AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge CB2 4AT
E. Muir†‡
Affiliation:
AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nutrient–gene interactions’
Copyright
The Nutrition Society

References

Balsan, S., Garabedian, M., Larchet, M., Gorski, A. M., Cournot, G., Tau, C., Bourdean, A., Silve, C. & Ricour, C. (1986). Long-term nocturnal calcium transfusions can cure rickets and promote normal mineralization in hereditary resistance to 1,25-dihydroxyvitamin D. Journal of Clinical Investigation 77, 16611667.CrossRefGoogle Scholar
Bar, A., Striem, S., Mayel-Afshar, S. & Lawson, D. E. M. (1990). Differential regulation of calbindin-D28k m.RNA in the intestine and eggshell gland of the laying hen. Journal of Molecular Endocrinology 4, 9399.CrossRefGoogle Scholar
Clements, M. R., Johnson, L. & Fraser, D. R. (1987). A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature 325, 6264.CrossRefGoogle ScholarPubMed
Demay, M. B., Gerardi, J. M., DeLuca, H. F. & Kronenberg, H. M. (1990). DNA sequences in the rat osteocalcin gene that bind the 1,25-dihydroxyvitamin D3 receptor and confer responsiveness to 1,25-dihydroxyvitamin D3. Proceedings of National Academy of Sciences USA 87, 369373.CrossRefGoogle Scholar
Emtage, J. S., Lawson, D. E. M. & Kodicek, E. (1973). Vitamin D-induced synthesis of m.RNA for calcium-binding protein. Nature 246, 100101.CrossRefGoogle Scholar
Haussler, M. R., Mangelsdorf, D. J., Komm, B. S., Terpening, C. M., Yamaoka, K., Allegretto, E. A., Baker, A. R., Shine, J., McDonnell, D. P., Hughes, M., Weigel, N. L., O'Malley, B. W. & Pike, J. W. (1988). Molecular biology of the vitamin D hormone. Recent Progress in Hormonal Research 44, 263296.Google ScholarPubMed
Hughes, M. R., Malloy, P. F., Kieback, D. G., Kesterson, R. A., Pike, J. W., Feldman, D. & O'Malley, B. W. (1988). Point mutations in the human vitamin D receptor gene associated with hypocalcaemic rickets. Science 242, 17021705.CrossRefGoogle Scholar
Kerner, S. A., Scott, R. A. & Pike, J. W. (1989). Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proceedings of National Academy of Sciences USA 86, 44554459.CrossRefGoogle ScholarPubMed
Liberman, U. A. (1988). Inborn errors in vitamin D metabolism – their contribution to the understanding of vitamin D metabolism. In Vitamin D, Molecular, Cellular and Clinical Endocrinology, pp. 935947. [Norman, A. W., editor]. Berlin: Walter deGruyter.Google Scholar
Markose, E. R., Stein, J. L., Stein, G. S. & Lian, J. B. (1990). Vitamin D-mediated modifications in protein–DNA interactions at two promoter elements of the osteocalcin gene. Proceedings of National Academy of Sciences USA 87, 17011705.CrossRefGoogle ScholarPubMed
Nys, Y., Bouillon, R. & Lawson, D. E. M. (1991). Comparative regulation of the intestinal and uterine level of calbindin mRNA in the fowl. In Calcium Transport and Intracellular Homeostasis [Pansu, D. and Bronner, F., editors] (In the Press).Google Scholar
Nys, Y., Mayel-Afshar, S., Bouillon, R., Van Baelen, H. & Lawson, D. E. M. (1988). Increases in calbindin D 28K mRNA in the uterus of the domestic fowl induced by sexual maturity and shell formation. General Comparative Endocrinology 76, 322329.CrossRefGoogle Scholar
Parmentier, M., DeVijlder, J. J. M., Muir, E., Szpirer, C., Islam, M. Q., van Kessel, A. G., Lawson, D. E. M. & Vassart, G. (1989). The human calbindin 27k-Da gene; structural organisation of the 5' and 3' regions, chromosomal assignment, and restriction fragment length polymorphism. Genomics 4, 309319.CrossRefGoogle Scholar
Pike, J. W., Kesterson, R. A., Scott, R. A., Kerner, S. A., McDonnell, D. P. & O'Malley, B. W. (1988). Vitamin D3 receptors; molecular structure of the protein and its chromosomal gene. In Vitamin D, Molecular, Cellular and Clinical Endocrinology, pp. 215223 [Norman, A. W., editor]. Berlin: Walter deGruyter.Google Scholar
Ritchie, H. H., Hughes, M. R., Thompson, E. T., Malloy, P. J., Hochberg, Z., Feldman, D., Pike, J. W. & O'Malley, B. W. (1989). An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D3-resistant rickets in three families. Proceedings of National Academy of Sciences USA. 86, 97839787.CrossRefGoogle Scholar
Sone, T., Marx, S. J., Liberman, U. A. & Pike, J. W. (1990). A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3. Molecular Endocrinology 4, 623631.CrossRefGoogle Scholar
Spencer, R., Charman, M., Wilson, P. & Lawson, D. E. M. (1976). Vitamin D-stimulated intestinal calcium absorption may not involve calcium-binding protein directly. Nature 263, 161163.CrossRefGoogle Scholar
Weisman, Y., Bab, I., Gazit, D., Szpirer, Z., Jafe, M. & Hochberg, Z. (1987). Long-term intracaval calcium infusion therapy in end-organ resistance to 1,25-dihydroxyvitamin D. American Journal of Medicine 83, 984990.CrossRefGoogle Scholar
Wilson, P. W., Harding, M. & Lawson, D. E. M. (1985). Putative amino acid sequence of chick calcium-binding protein deduced from a complementary DNA sequence. Nucleic Acids Research 13, 88678877.CrossRefGoogle ScholarPubMed
Wilson, P. W., Rogers, J., Harding, M., Pohl, V., Pattyn, G. & Lawson, D. E. M. (1988). Structure of chick chromosomal genes for calbindin and calretinin. Journal of Molecular Biology 200, 615625.CrossRefGoogle ScholarPubMed