Hostname: page-component-6d856f89d9-jrqft Total loading time: 0 Render date: 2024-07-16T04:40:39.720Z Has data issue: false hasContentIssue false

The effects of injury and joint disease on muscle mass and protein turnover

Published online by Cambridge University Press:  28 February 2007

J. N. Alastair Gibson
Affiliation:
Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh EH8 9AG and Department of Anatomy & Physiology, University of Dundee, Dundee DD1 4HN
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
The Sir David Cuthbertson Medal lecture 1990
Copyright
The Nutrition Society

References

Akbarnia, B. A., Keppler, L. K., Price, E., Goelz, T. & Simpson, R. (1985). Lateral electrical surface stimulation (LESS) for the treatment of adolescent idiopathic scoliosis (AIS). An analysis based on progression risk. Paper presented before the Annual Meeting of Scoliosis Research Society, San Diego.Google Scholar
Axelgaard, J. & Brown, J. E. (1983). Lateral electrical surface stimulation for the treatment of progressive idiopathic scoliosis. Spine 8, 242260.Google Scholar
Bauer, J. J. H. (1873). Ueber den staffumsatz nach blutentziehungen. Zeitschrift für Biologie 8, 567.Google Scholar
Bennet, W. M., Connacher, A. A., Scrimgeour, C. M., Smith, K. & Rennie, M. J. (1989). Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [l-13C]leucine. Clinical Science 76, 447454.CrossRefGoogle ScholarPubMed
Bernard, C. (1877). Leçons sur le diabète et la glycogenèse animale. An Introduction to the Study of Experimental Medicine, p. 210. Paris: Ballière. Translated by Greene, H. C. (1927).Google Scholar
Buresova, M., Gutmann, E. & Klicpera, M. (1969). Effect of tension upon rate of incorporation of amino acids into proteins of cross-striated muscle. Experientia 25, 144145.CrossRefGoogle ScholarPubMed
Coakley, J., Smith, P. E. M., Dietrichson, P., Helliwell, T. & Edwards, R. H. T. (1987). Percutaneous muscle biopsy with conchotome. Clinical Science 71, 23P.CrossRefGoogle Scholar
Cuthbertson, D. P. (1930). The disturbance of metabolism produced by bone and non-bony injury, with notes on certain abnormal conditions of bone. Biochemical Journal 24, 12441263.Google Scholar
Cuthbertson, D. P. (1980 a). Alterations in metabolism following injury: part I. Injury 11, 175189.Google Scholar
Cuthbertson, D. P. (1980 b). Alterations in metabolism following injury: part II. Injury 11, 286303.CrossRefGoogle ScholarPubMed
Enneking, W. F. & Harrington, P. (1969). Pathological changes in scoliosis. Journal of Bone and Joint Surgery 51A, 165184.CrossRefGoogle Scholar
Ford, D. M., Bagnall, K. M., McFadden, K. D., Greenhill, B. J. & Raso, V. J. (1984). Paraspinal muscle imbalance in adolescent idiopathic scoliosis. Spine 9, 373376.CrossRefGoogle ScholarPubMed
Forster, A. & Palastanga, N. (1981). Electrical stimulation of nerve and muscle. In Clayton's Electrotherapy: Theory and Practice, 8th ed., pp. 4096. London: Ballière Tindall.Google Scholar
Gibson, J. N. A., Halliday, D., Morrison, W. L., Stoward, P. J., Hornsby, G. A., Watt, P. W., Murdoch, G. & Rennie, M. J. (1987). Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clinical Science 72, 503509.CrossRefGoogle ScholarPubMed
Gibson, J. N. A., McMaster, M. J., Scrimgeour, C. M., Stoward, P. J. & Rennie, M. J. (1988 a). Rates of muscle protein synthesis in paraspinal muscles: lateral disparity in children with idiopathic scoliosis. Clinical Science 75, 7983.CrossRefGoogle ScholarPubMed
Gibson, J. N. A., Morrison, W. L., Scrimgeour, C. M. & Smith, K. (1986). Paradoxical increase in human quadriceps protein synthetic rate measured by stable-isotopes with chronic reduction of knee mobility. Journal of Physiology 380, 69P.Google Scholar
Gibson, J. N. A., Morrison, W. L., Scrimgeour, C. M., Smith, K., Stoward, P. J. & Rennie, M. J. (1989). Effects of therapeutic percutaneous electrical stimulation of atrophic human quadriceps on muscle composition, protein synthesis and contractile properties. European Journal of Clinical Investigation 19, 206212.CrossRefGoogle ScholarPubMed
Gibson, J. N. A., Poyser, N. L. & Rennie, M. J. (1990). Effects of corticosteroid therapy on quadriceps protein synthesis and intramuscular prostaglandin concentration in patients with rheumatoid arthritis. Proceedings of the Nutrition Society 49, 169A.Google Scholar
Gibson, J. N. A., Smith, K. & Rennie, M. J. (1988 b). Prevention of disuse muscle atrophy by means of electrical stimulation: maintenance of protein synthesis. Lancet ii, 767770.Google Scholar
Goldspink, D. F. (1977). The influence of immobilization and stretch on protein turnover of rat skeletal muscle. Journal of Physiology 264, 267282.Google Scholar
Halliday, D. & McKeran, R. O. (1975). Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intra-venous infusion of L-(α-15N)lysine. Clinical Science 49, 581590.CrossRefGoogle Scholar
Haslock, D. I., Wright, V. & Harriman, D. G. F. (1970). Neuromuscular disorders in rheumatoid arthritis. Quarterly Journal of Medicine 39, 335357.Google Scholar
Kantrowitz, F., Robinson, D. R. & MuGuire, M. B. (1975). Corticosteroids inhibit prostaglandin production by rheumatoid synovia. Nature 258, 737739.CrossRefGoogle Scholar
Matthews, D. E., Schwartz, H. P., Yang, R. D., Motil, K. J., Young, V. R. & Bier, D. M. (1982). Relationship of plasma leucine and α-ketoisocaproate during a L-(1-13C)leucine infusion in man: a method for measuring human intracellular leucine tracer enrichment. Metabolism 31, 11051112.CrossRefGoogle Scholar
Millward, D. J. (1980). Protein turnover in cardiac and skeletal muscle during normal growth and hypertrophy. In Degradative Processes in Skeletal and Cardiac Muscle, pp. 161200 [Wildenthal, K., editor]. Amsterdam: Elsevier/North Holland.Google Scholar
Mizel, S. B., Dayer, J. M., Krane, S. M. & Mergenhagen, S. E. (1981). Stimulation of rheumatoid synovial cell collagenase and prostaglandin production by partially purified lymphocyte-activating factor (interleukin 1). Proceedings of the National Academy of Science 78, 24742477.CrossRefGoogle ScholarPubMed
Morrison, W. L., Bouchier, I. A. D., Gibson, J. N. A. & Rennie, M. J. (1990). Skeletal muscle and whole-body protein turnover in cirrhosis. Clinical Science 78, 613619.CrossRefGoogle ScholarPubMed
Morrison, W. L., Gibson, J. N. A., Jung, R. T. & Rennie, M. J. (1988). Skeletal muscle and whole body protein turnover in thyroid disease. European Journal of Clinical Investigation 18, 6268.CrossRefGoogle ScholarPubMed
Odedra, B. R. & Millward, D. J. (1982). Effect of corticosterone treatment on muscle protein turnover in adrenalectomised rats and diabetic rats maintained on insulin. Biochemical Journal 204, 663672.CrossRefGoogle Scholar
Ponseti, I. V., Pedrini, V., Wynne-Davies, R. & Duval-Beaupere, G. (1976). Pathogenesis of scoliosis. Clinical Orthopaedics and Related Research 120, 268280.Google Scholar
Rennie, M. J. (1985). Muscle protein turnover and the wasting due to injury and disease. British Medical Bulletin 41, 257264.CrossRefGoogle ScholarPubMed
Rennie, M. J., Edwards, R. H. T., Millward, D. J., Wolman, S. L., Halliday, D. & Matthews, D. E. (1982). Effects of Duchenne muscular dystrophy on muscle protein synthesis. Nature 296, 165167.Google Scholar
Rennie, M. J. & Halliday, D. (1984). The use of stable isotope tracers as metabolic probes of whole-body and limb metabolism. Proceedings of the Nutrition Society 43, 189196.Google Scholar
Reuber, M., Schultz, A., McNeill, T. & Spencer, D. (1983). Trunk muscle myoelectric activities in idiopathic scoliosis. Spine 8, 447456.Google Scholar
Rodemann, H. P. & Goldberg, A. L. (1982). Arachidonic acid, prostaglandin E2 and F influence rates of protein turnover in skeletal and cardiac muscle. Journal of Biological Chemistry 257, 16321638.CrossRefGoogle Scholar
Ropes, M. W., Bennett, G. A., Cobb, S., Jaxcox, R. & Jessar, R. A. (1958). Diagnostic criteria for rheumatoid arthritis. Bulletin of the Rheumatic Diseases 9, 175176.Google Scholar
Schneible, P. A., Airhert, J. & Low, R. B. (1981). Differential compartmentation of leucine for oxidation and for protein synthesis in cultured skeletal muscle. Journal of Biological Chemistry 256, 48884894.Google Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). In Protein Turnover in Mammalian Tissues and in the Whole Body, pp. 250275. Amsterdam: North-Holland Publishing Company.Google Scholar
Watt, P. W., Gibson, J. N. A., Lindsay, Y., Downie, S. & Rennie, M. J. (1991 a). Are values of leucyl-tRNA labelling from human muscle biopsies reliable? Some supporting evidence. Proceedings of the Nutrition Society (In the Press.)Google Scholar
Watt, P. W., Lindsay, L., Gibson, J. N. A. & Chien, P. W. (1991 b). Modification of existing methods for amino-acyl t-RNA extraction: application to clinical investigations of precursor pool labelling and turnover. Proceedings of the National Academy of Sciences (In the Press.)Google Scholar
Wertheimer, F. & Clogne, R. (1919). Quelques considérations sur les modifications humorales et les réactions de l'organisme dans le shock. Bulletins et mémoires de la société de chirurgie de Paris 45, 812.Google Scholar
Wood, D. D., Ihrie, E. J., Dinarello, C. A. & Cohen, P. L. (1983). Isolation of an interleukin-1 like factor from human joint effusions. Arthritis and Rheumatism 26, 975983.Google Scholar
Wool, I. G. & Weinshelbaum, E. J. (1959). Incorporation of 14C amino acids into protein of isolated diaphragms: role of adrenal steroids. American Journal of Physiology 197, 10891092.CrossRefGoogle Scholar
Yarom, R. & Robin, G. C. (1979). Studies on spinal and peripheral muscles from patients with scoliosis. Spine 4, 1221.CrossRefGoogle ScholarPubMed
Yarom, R., Wolf, E. & Robin, G. C. (1982). Deltoid pathology in idiopathic scoliosis. Spine 7, 463470.Google Scholar