Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T18:25:02.675Z Has data issue: false hasContentIssue false

Archaeological and Palaeo-environmental Investigations of the Upper Allen Valley, Cranborne Chase, Dorset (1998–2000): a New Model of Earlier Holocene Landscape Development

Published online by Cambridge University Press:  18 February 2014

Charles French
Affiliation:
Dept of Archaeology, University of Cambridge, Downing St, Cambridge CB1 3DZ
Helen Lewis
Affiliation:
Dept of Continuing Education, University of Oxford, Rewley House, Oxford OX1 2JA
Michael J. Allen
Affiliation:
Wessex Archaeology, Portway House, Old Sarum Park, Salisbury SP4 6EB
Robert G. Scaife
Affiliation:
Dept of Geography, University of Southampton, Highfield, Southampton SO17 1BJ
Martin Green
Affiliation:
Down Farm, Woodcutts, Dorset

Abstract

A combination of on- and off-site palaeo-environmental and archaeological investigations of the upper Allen valley of Dorset conducted in 1998–2000 has begun to reveal a different model of landscape development than those previously put forward. A combination of off-site geoarchaeological and aerial photographic survey and palynological analyses of two relict palaeochannel systems, and sample investigations of four Bronze Age round barrows and a Neolithic enclosure, have been combined with inter-regional summaries of the archaeological and molluscan records to re-examine the prehistoric landscape dynamics in the study area. Preliminary results suggest that woodland development in the earlier Holocene appears to have been more patchy than the presumed model of full climax deciduous woodland. With open areas still present in the Mesolithic, the area witnessed its first exploitation of the chalk downs, thus slowing and altering soil development of the downlands. Consequently, many areas perhaps never developed thick, well structured, clay-enriched soils (or argillic brown earths), but rather thin brown earths. By the later Neolithic these under-developed soils had become thin rendzinas, largely as a consequence of human exploitation. The presence of thinner and less well-developed soils over large areas of downland removes the necessity for envisaging extensive soil erosion and thick aggraded deposits in the valley bottom in later prehistory. The investigations have suggested that, if there were major changes in vegetation and soil complexes, these had already occurred by the Neolithic rather than in the Bronze Age as suggested by previous researchers, and the area has remained relatively stable since.

Résumé

Une combinaison d'investigations archéologiques et paléoenvironnementales du site de la vallée supérieure de l'Allen, dans le Dorset, effectuées sur place et ailleurs entre 1998 et 2000 a commencé à révéler un modèle de développement du paysage qui diffère de ceux mis en avant précédemment. Une combinaison de prospection géo¬-archéologique et de photographie aérienne et d'analyses palynologiques de deux systèmes de paléocanaux abandonnés, et des investigations partielles de quatre tertres arrondis de l'âge du bronze et d'une enceinte néolithique, ont été associés à des résumés interrégionaux des données archéologiques et de mollusques pour réexaminer la dynamique du paysage préhistorique dans la région étudiée. Les premiers résultats donnent à penser que le développement de la forêt au début de l'holocène semble avoir été plus parsemé que le modèle présumé d'une forêt d'espèces à feuilles caduques à son apogée. Avec des zones de campagne ouverte toujours présentes au mésolithique, la région a vu sa première exploitation des collines crayeuses, qui a ralenti et modifié l'évolution du sol des terrains. Par conséquent, de nombreuses zones n'ont peut-être jamais formé de sols épais, bien structurés et riches en argiles (ou terres brunes argileuses), mais seulement des terres brunes plutôt minces. Au néolithique tardif, ces sols sous-développés étaient devenus de minces ‘rendzinas’, en grande partie à la suite de leur exploitation par l'homme. Du fait de la présence de ces sols plus minces et moins bien développés sur de vastes zones des terrains, il n'a pas été nécessaire d'envisager l'hypothèse d'une érosion extensive des sols et de l'accumulation de riches dépôts dans le fond de la vallée à la préhistoire récente. Des recherches ont donné à penser que, s'il y avait eu des changements majeurs dans les complexes de la végétation et des sols, ceux-ci avaient eu lieu avant la fin du néolithique plutôt qu'à l'âge du bronze comme l'avaient suggéré de précédents chercheurs, et la région est restée relativement stable depuis lors.

Zusammenfassung

Durch eine Kombination umweltarchäologischer und archäologischer Untersuchungen im oberen Allen Valley von Dorset, die 1998–2000 in und um die Fundstelle herum durchgeführt wurden, zeigte sich ein neues Modell der Landschaftsentwicklung. Weiterhin wurden geoarchäologische und pollenkundliche Analysen und ein luftbildarchäologischer Survey der Überreste zweier Paläokanalsysteme in der Umgebung der Fundstelle und ausgewählte Analysen vier bronzezeitlicher Rundhügelgräber und einer neolithischen Grabenanlage mit interregionalen archäologischen und Mollusken Daten kombiniert, um erneut die Dynamik prähistorischer Landschaften im Bearbeitungsgebiet zu untersuchen. Vorläufige Ergebnisse deuten an, dass im frühen Holozän die Entwicklung der Waldlandschaft wesentlich uneinheitlicher gewesen zu sein scheint, als es das bisher angenommene Modell eines Höhepunktes einer laubwechselnden Waldlandschaft nahegelegt hat. Während des Mesolithikums gab es in diesem Raum immer noch offene Gebiete und es wurde zum ersten Mal Kalkstein ausgebeutet, was somit die Bodenentwicklung der Auenlandschaft verlangsamte und veränderte. Demzufolge entwickelten sich in vielen Gebieten wahrscheinlich keine dicken, gut strukturierten und lehmreichen Böden (oder lessivierte Braunerdeböden), sondern eher dünne Braunerdeböden. Bis zum Späten Neolithikum waren diese unterentwickelten Böden größtenteils durch menschliche Ausbeutung zu dünnen Rendzinaböden geworden. Das Vorkommen von dünneren und weniger gut entwickelten Böden über weite Bereiche des Tieflandes verhindert aber auch extensive Bodenerosion und dicke Ablagerungen schlechter Qualität in den Talsohlen in der späteren Vorgeschichte. Die Untersuchungen haben gezeigt, dass mögliche größere Veränderungen in der Vegetation und den Böden bereits im Neolithikum und nicht erst in der Bronzezeit aufgetreten sind, wie es von einigen Forschern vorgeschlagen worden ist, und dass seit dem Neolithikum der Raum relativ stabil geblieben ist.

Résumen

Una combinación de investigaciones paleo-ambientales y arqueológicas in situ y fuera de situ efectuadas en el Upper Alien Valley de Dorset entre 1998–2000, ha comenzado a revelar un modelo de evolución del paisaje diferente de los antes contemplados. La combinación de prospección geo-arqueológica fuera de situ junto con fotografía aérea y análisis palinológico de dos sistemas abandonados de paleocanales, e investigaciones de toma de muestras en cuatro túmulos redondos de la Edad del Bronce y de un recinto del Neolítico, se han combinado con resúmenes inter-regionales de la información arqueológica y de los moluscos para re-examinar la dinámica del paisaje prehistórico en la zona de estudio. Los resultados preliminares sugieren que el desarrollo de bosques durante el Primer Holoceno fue más irregular de lo que se suponía en el modelo de pleno desarrollo de los bosques de hoja caduca. Con parajes abiertos todavía durante el Mesolítico, la zona vio la primera explotación de sus depósitos de creta, lo cual retrasó y transformó el desarrollo de los suelos en las tierras bajas. Consecuentemente, muchas zonas quizá nunca llegaron a desarrollar suelos ricos en arcilla de tipo denso y bien estructurado (o tierra de arcilla marrón), sino más bien finos suelos marrones. Hacia finales del Neolítico estos suelos poco desarrollados se habían transformado en delgados suelos de rendzina, sobre todo a raíz de la explotación humana. La presencia de suelos más finos y menos desarrollados en grandes zonas de los valles elimina la necesidad de suponer la existencia de una erosión de suelo extensiva y de gruesos depósitos de material erosionado en los valles en la tarda prehistoria. Las investigaciones han indicado que si se dieron grandes cambios en la vegetación y suelos, éstos ya habían ocurrido en el Neolítico y no en la Edad del Bronce como habían sugerido investigadores anteriores, y que la zona ha permanecido relativamente estable desde aquel entonces.

Type
Research Article
Copyright
Copyright © The Prehistoric Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Allen, M.J. 1992. Products of erosion and the prehistoric land-use of the Wessex Chalk. In Bell, M. & Boardman, J. (eds), Past and Present Soil Erosion, 3752. Oxford: Oxbow Monograph 22Google Scholar
Allen, M.J. 1994. The Land-use History of the Southern English Chalklands with an Evaluation of the Beaker Period using Colluvial Data: colluvial deposits as environmental and cultural indicators. University of Southampton: unpublished PhD thesisGoogle Scholar
Allen, M.J. 1995. Before Stonehenge, The environment sections. In Cleal, R.Walker, K. & Montague, R., Stonehenge in its Landscape, 4–5, 34, 41–65, 116–7, 168–9 & 332–4. London: English Heritage Archaeological Report 10Google Scholar
Allen, M.J. 1997a. Environment and land-use: the economic development of the communities who built Stonehenge (an economy to support the stones). In Cunliffe, B.W. & Renfrew, A.C. (eds), Science and Stonehenge, 115–44. Proceedings of the British Academy 92Google Scholar
Allen, M.J. 1997b. Handley Down Mortuary Enclosure: mollusc assessment, recommendation and potential. Unpublished report to School of Conservation Sciences, University of BournemouthGoogle Scholar
Allen, M.J. 1998. A note on reconstructing the prehistoric landscape environment in Cranborne Chase: the Allen Valley. Proceedings of the Dorset Natural History & Archaeological Society 120, 3944Google Scholar
Allen, M.J. 2000a. Soils, pollen and lots of snails. In Green, 2000, 3644Google Scholar
Allen, M.J. 2000b. High resolution mapping of Neolithic and Bronze Age landscapes and land-use; the combination of multiple palaeo-environmental analysis and topographic modelling. In Fairbairn, A.S. (ed.), Plants in Neolithic Britain and Beyond: landscape and environment, economy and society 926. Oxford: Oxbow/Neolithic Studies Group 5CrossRefGoogle Scholar
Allen, M.J. 2002. The chalkland landscape of Cranborne Chase; a prehistoric human ecology, Landscapes 3, 5569CrossRefGoogle Scholar
Allen, M.J. & Allen, L. 1999. Advances in the application of diversity indices to archaeological snail assemblages. Paper submitted to Environmental ArchaeologyGoogle Scholar
Allen, M.J. & Green, M. 1998. The Fir Tree Field Shaft: the archaeological potential of solution features in chalk. Proceedings of the Dorset Natural History & Archaeological Society 120, 2538Google Scholar
Allen, M.J., Entwistle, R. & Richards, J.C. 1990. Molluscan studies. In Richards, J.C., The Stonehenge Environs Project, 253–6. London: English Heritage Archaeological Report 16Google Scholar
Arnold, J., Green, M., Lewis, B. & Bradley, R. 1988. The Mesolithic of Cranborne Chase. Proceedings of the Dorset Natural History & Archaeological Society 110 117–25Google Scholar
Ashbee, P., Smith, I.F. & Evans, J.G. 1979. Excavation of three long barrows near Avebury, Wiltshire. Proceedings of the Prehistoric Society 45, 207300CrossRefGoogle Scholar
Barber, K.E. & Clarke, M.J. 1987. Cranes Moor, New Forest: palynology and macro-fossil stratigraphy. Quaternary Research Association Field Guide for Wessex and the Isle of Wight, 3344. London: Quaternary Research AssociationGoogle Scholar
Barrett, J. 1994. Fragments from Antiquity. London: BlackwellGoogle Scholar
Barrett, J., Bradley, R. & Green, M. 1991a. Landscape Monuments and Society: the prehistory of Cranborne Chase. Cambridge: University PressCrossRefGoogle Scholar
Barrett, J., Bradley, R. & Hall, M. 1991b. Papers on the Prehistoric Archaeology of Cranborne Chase. Oxford: Oxbow Monograph 11Google Scholar
Bell, M. 1983. Valley sediments as evidence of prehistoric land-use on the South Downs. Proceedings of the Prehistoric Society 49, 119–50CrossRefGoogle Scholar
Bell, M.G. 1992. The prehistory of soil erosion. In Bell, M. & Boardman, J. (eds), Past and Present Soil Erosion, 2136. Oxford: Oxbow Monograph 22Google Scholar
Bell, M.G. & Shackleton, J. 1982. Land Mollusca from Coneybury Henge, Wiltshire. London: Ancient Monuments Laboratory Report 3639Google Scholar
Bell, M.G., Allen, M.J., Smith, R.W. & Johnson, S. forthcoming. Mollusc and sedimentary evdience for the palaeo-environmental history of Hambledon Hill and its surroundings. In Mercer, R. & Healy, F.Hambledon Hill. London: English Heritage Archaeological ReportGoogle Scholar
Bennett, K.D., Whittington, G. & Edwards, K.J. 1994. Recent plant nomenclatural changes and pollen morphology in the British Isles. Quaternary Newsletter 73, 16Google Scholar
Birks, H.J.B. 1989. Holocene isochrone maps and patterns of tree-spreading in the British Isles. Journal of Biogeography 16, 503–40CrossRefGoogle Scholar
Bowen, H.C. 1990. The Archaeology of Bokerley Dyke. London: HMSOGoogle Scholar
Bradley, R. 1978. The Prehistoric Settlement of Britain. London: Routledge & Kegan PaulGoogle Scholar
Bradley, E. & Entwistle, R. 1985. Thickthorn Down long barrow – a new assessment. Proceedings of the Dorset Natural History & Archaeological Society 107, 174–6Google Scholar
Burrow, S. 1996. Survey and excavations on enclosures in Cranborne Chase. Electronic publication at http://csweb.bournemouth.ac.uk/consci/proj_cran. Accessed 03/08/00Google Scholar
Burrow, S. & Gale, J. 1995. Survey and excavation at Knowlton Rings, Woodland Parish, Dorset 1993–5. Proceedings of the Dorset Natural History & Archaeological Society 117, 131–2Google Scholar
Bush, M.B. 1988. Early Mesolithic disturbance: A force on the landscape. Journal of Archaeological Science 15, 453–62CrossRefGoogle Scholar
Bush, M.B. & Flenley, J.R. 1986. The age of the British chalk grasslands. Nature 395, 484–5Google Scholar
Catt, J.A. 1978. The contribution of loess to soils in lowland Britain. In Limbrey, S. & Evans, J.G. (eds), The Effect of Man on the Landscape: the Lowland Zone, 1220, London: Council for British Archaeology Research Report 21Google Scholar
Catt, J.A., Green, M. & Arnold, N.J. 1980. Naleds in a Wessex Downland Valley. Proceedings of the Dorset Natural History & Archaeological Society 102, 6975Google Scholar
Colt Hoare, R. 1812. The Ancient History of Wiltshire. London: William MillarGoogle Scholar
Colt Hoare, R. 1819. The Ancient History of North Wiltshire. London: Lackington, Hughes, Harding, Mayor & JonesGoogle Scholar
Drew, C. & Piggott, S. 1936. The excavation of long barrow 163a on Thickthorn Down, Dorset. Proceedings of the Prehistoric Society 41, 7796CrossRefGoogle Scholar
Ellis, C. 1985. Flandrian molluscan biostratigraphy and its application to dry valley deposits in East Sussex. In Fieller, N., Gilbertson, D.D. & Ralph, N.G.A. (eds), Palaeobiological Investigations: research design, methods and data analysis, 157165, Oxford: British Archaeological Report S266Google Scholar
Ellis, C. 1986. The postglacial molluscan succession of the South Downs dry valleys. In Sieveking, G. de G. & Hart, M.B. (eds), The Scientific Study of Flint and Chert, 175–94. Cambridge: University PressGoogle Scholar
Entwistle, R. 1989. Relativism and Interpretation in Prehistoric Archaeology: some thoughts on the formulation of archaeological evidence, with special reference to the use of palaeoenvironmental data. Unpublished PhD thesis, University of ReadingGoogle Scholar
Entwistle, R. 1990a. Statistical appraisal (Mollusca). In Richards, J.C., The Stonehenge Environs Project, 254. London: English Heritage Archaeological Report 16Google Scholar
Entwistle, R. 1990b. Land mollusca (Lesser Cursus, Amesbury long barrow). In Richards, J.C.The Stonehenge Environs Project, 88–93 & 105–9. London: English Heritage Archaeological Report. 16Google Scholar
Entwistle, R. 1994. The environmental setting of the linear ditches system. In Bradley, R., Entwistle, R. & Raymond, F.Prehistoric Land Divisions on Salisbury Plain: the work of the Wessex Linear Ditches project, 101–21. London: English Heritage Archaeological Report 2Google Scholar
Entwistle, R. & Bowden, M. 1991. Cranborne Chase: the molluscan evidence. In Barrett, et al. 1991b, 2048Google Scholar
Evans, J.G. 1972. Land Snails in Archaeology. London: Seminar PressGoogle Scholar
Evans, J.G. Unpublished. New Things to do with Snails and Slugs: a study in diversity and association. Unpublished manuscriptGoogle Scholar
Evans, J.G. & Smith, I.F. 1983. Excavations at Cherhill, North Wiltshire, 1967. Proceedings of the Prehistoric Society 49, 101–9CrossRefGoogle Scholar
Evans, J.G. & Williams, D. 1991. Land Mollusca from the M3 archaeological sites – a review. In Fasham, P.J. & Whinney, R.J.B.Archaeology and the M3: the watching brief, the Anglo-Saxon settlement at Abbots Worthy and retrospective sections, 113–42. Hampshire Field Club & Archaeological Society Monograph 7Google Scholar
Field, N.H. 1962. Discoveries at the Knowlton Circles, Woodlands, Dorset. Proceedings of the Dorset Natural History & Archaeological Society 85, 117–24Google Scholar
Fisher, P.F. 1991. The physical environment of Cranborne Chase. In Barrett, et al. 1991b, 1119Google Scholar
French, C.A.I. 1983. An Environmental Study of the Soil, Sediment and Molluscan Evidence Associated with Prehistoric Monuments on River Terrace Gravels in North West Cambridgeshire. Unpublished PhD thesis. University of LondonGoogle Scholar
French, C.A.I. 1985. Soil/sediments and molluscan analyses at Barnack/Bainton and Barnack/Pilsgate. In Pryor, F. & French, C.The Fenland Project, No. 1: Archaeology and Environment in the Lower Welland Valley, 284–96. Cambridge: East Anglian Archaeology 27Google Scholar
French, C., Lewis, H., Allen, M. & Scaife, R. 2000. Palaeoenvironmental and archaeological investigations on Wyke Down and in the upper Allen valley, Cranborne Chase, Dorset, England: interim summary report for 1998–9. Proceedings of the Dorset Natural History & Archaeological Society 122, 5371Google Scholar
Gardiner, J. 1985. Intra-site patterning in the flint assemblage from the Dorset Cursus. Proceedings of the Dorset Natura History & Archaeological Society 105, 8793Google Scholar
Gardiner, J. 1991. Spatial analysis: the lithic scatter and the Cursus. In Barrett, et al. 1991a, 73–5Google Scholar
Goodman, D. 1975. The theory of diversity-stability relations in ecology. Quarterly Review of Biology 50, 237–66CrossRefGoogle Scholar
Gordon, D. & Ellis, C. 1985. Species composition parameters and life tables: their application to detect environmental change in fossil land molluscan assemblages, in Fieller, N., Gilbertson, D.D. & Ralph, N.G.A. (eds), Palaeoenvironmental Investigations: research design, methods and data analysis, 157–74. Oxford, British Archaeological Report S258Google Scholar
Green, M. 2000. A Landscape Revealed: 10,000 years on a chalk downland farm. Stroud: TempusGoogle Scholar
Green, M. & Allen, M.J. 1997. An early prehistoric shaft on Cranborne Chase. Oxford journal of Archaeology 16, 121–32CrossRefGoogle Scholar
Green, M., Barton, R.N.E., Debenham, N. & French, C.A.I. 1998. A new late-glacial open-air site at Deer Park Farm, Wimborne St. Giles. Proceedings of the Dorset Natural History & Archaeological Society 120, 85–8Google Scholar
Grimm, E.C. 1991. TILIA and TILIA-GRAPH. Springfield: Illinois State MuseumGoogle Scholar
Grinsell, L.V. 1936. The Ancient Burial-Mounds of England. London: MethuenGoogle Scholar
Haskins, L.E. 1978. The Vegetational History of South-East Dorset. Unpublished PhD thesis, University of SouthamptonGoogle Scholar
Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–86CrossRefGoogle ScholarPubMed
Kenward, H.K. 1978. The Analysis of Archaeological Insect Assemblages: a new approach. London: Council for British Archaeology/York Archaeological Trust, The Archaeology of York 19.1Google Scholar
Kerney, M.P., Brown, E.H. & Chandler, T.J. 1964. The late-glacial and post-glacial history of the chalk escarpment near Brook, Kent. Philosophical Transactions of the Royal Society B248, 135204Google Scholar
Lewis, B. & Coleman, R. 1982. Pentridge Hill, Dorset: trial excavation. Proceedings of the Dorset Natural History & Archaeological Society 104, 5965Google Scholar
Lewis, H., French, C. & Green, M. 2000. A decorated megalith from Knowlton, Dorset. PAST 35, 13Google Scholar
Long, A.J., Scaife, R.G. & Edwards, R.J. 1999. Pine pollen in intertidal sediments from Poole Harbour, UK: Implications for late Holocene sediment accretion rates and sea-level rise. Quaternary International 55, 316CrossRefGoogle Scholar
Magurran, A.E. 1988. Ecological Diversity and its Measurement. London: Chapman & HallCrossRefGoogle Scholar
Moore, P.D. & Webb, J.A. 1978. An Illustrated Guide to Pollen Analysis. London: Hodder & StoughtonGoogle Scholar
Moore, P.D., Webb, J.A. & Collinson, M.E. 1991. Pollen analysis (2 edn). Oxford: Blackwell ScientificGoogle Scholar
Pielou, E.C. 1975. Ecological Diversity. New York: WileyGoogle Scholar
Piggott, S. & Piggott, C.M. 1944. Excavation of barrows on Crichel and Launceston Downs, Dorset. Archeaologia 90, 4780CrossRefGoogle Scholar
Pitt Rivers, A.H.L.F. 1887. Excavations in Cranborne Chase, near Rushmore. Volume 1. Excavations in the Romano-British Village on Woodcutts Common, and Romano-British Antiquities in Rushmore Park. Privately printedGoogle Scholar
Pitt Rivers, A.H.L.F. 1888. Excavations in Cranborne Chase, near Rushmore. Volume II. Excavations in barrows near Rushmore; Excavations in Romano-British Village, Rotherley; Excavations in Winklebury Camp; Excavations in British barrows and Anglo Saxon Cemetery, Winklebury Hill. Privately printedGoogle Scholar
Pitt Rivers, A.H.L.F. 1892. Excavations in Cranborne Chase, near Rushmore. Volume III. Privately printedGoogle Scholar
Pitt Rivers, A.H.L.F. 1898. Excavations in Cranborne Chase, near Rushmore. Volume IV. Privately printedGoogle Scholar
Poole, R.W. 1974. An Introduction to Quantitative Ecology. Tokyo: McGraw HillGoogle Scholar
Preece, R.C. & Bridgland, D. 1999. Holywell Coombe, Folkestone: a 13,000 year history of an English chalkland valley. Quaternary Science Review 18, 1075–125CrossRefGoogle Scholar
Scaife, R.G. 1980. Late Devensian and Flandrian Palaeoecological Studies in the Isle of Wight.Unpublished PhD thesis, University of LondonGoogle Scholar
Scaife, R.G. 1982. Late Devensian and early Flandrian vegetational changes in southern England. In Limbrey, S. & Bell, M. (eds), Archaeological Aspects of Woodland Ecology, 5774. Oxford: Symposia of the Association for Environmental Archaeology 2/British Archaeological Report S146Google Scholar
Scaife, R.G. 1987. The Late Devensian and Holocene vegetation and environment of the Isle of Wight. In Barber, & Clarke, (eds) 1987, 156–80Google Scholar
Scaife, R.G. 1994. Pollen Analysis of the River Allen Floodplain, Wimborne. Unpublished report, University of Southampton.Google Scholar
Seagrief, S.C. 1959. Pollen diagrams from southern England: Wareham, Dorset and Nursling, Hampshire. New Phytologist 58, 316–25CrossRefGoogle Scholar
Seagrief, S.C. 1960. Pollen diagrams from southern England: Cranes Moor, Hampshire. New Phytologist 59, 7383CrossRefGoogle Scholar
Seagrief, S.C. & Godwin, H. 1960. Pollen diagrams from southern England: Elstead, Surrey. New Phytologist 59, 8491CrossRefGoogle Scholar
Shennan, S.J. 1988. Quantifying Archaeology. Edinburgh: University PressGoogle Scholar
Southwood, T.R.E. 1978. Ecological Methods. London: Chapman & Hall.Google Scholar
Sparey-Green, C. 1997. Sixpenny Handley: Myncen Farm 1997. Proceedings of the Dorset Natural History & Archaeological Society 119, 91–4Google Scholar
Sparey-Green, C. 1998. Interim report on excavations at Myncen Farm, Sixpenny Handley, Dorset, 1998. Proceedings of the Dorset Natural History & Archaeological Society 120, 91–4Google Scholar
Stace, C. 1991. New Flora of the British Isles. Cambridge: University PressGoogle Scholar
Stuiver, M. & Plicht, J. van der. 1998. Editorial comment. Radiocarbon 40, xii–xiiiCrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Plicht, J. van der & Spurk, M. 1998. INTCAL98 Radiocarbon Age Calibration 24,000–0 cal BP. Radiocarbon 40, 1041–83CrossRefGoogle Scholar
Summers, P.G. 1941. A Mesolithic site, near Iwerne Minster, Dorset. Proceedings of the Prehistoric Society 7, 145–64CrossRefGoogle Scholar
Talma, A.S. & Vogel, J.C. 1993. A simplified approach to calibrating C14 dates. Radiocarbon 35, 317–22CrossRefGoogle Scholar
Thomas, K.D. 1978. Population studies on molluscs in relation to environmental archaeology. In Brothwell, D., Thomas, K.D. & Clutton-Brock, J. (eds), Research Problems in Zooarchaeology, 919. London: Institute of Archaeology Occasional Paper 3Google Scholar
Thomas, K.D. 1985. Land snail analyis in archaeology: theory and practice. In Fieller, N., Gilbertson, D.D. & Ralph, N.G.A. (eds), Palaeoenvironmental Investigations: research design, methods and data analysis, 131–57. Oxford: British Archaeological Report S266Google Scholar
Thomas, K.D. 1989. Vegetation of the British chalklands in the Flandrian period: a response to Bush. Journal of Archaeological Science 16, 549–53CrossRefGoogle Scholar
Thomas, W.R. & Foin, T. C. 1982. Neutral hypotheses and patterns of species diversity: fact or fiction? Palaeobiology 8, 4455CrossRefGoogle Scholar
Thorley, A. 1981. Pollen analytical evidence relating to the vegetation history of the chalk. Journal of Biogeography 8, 93106CrossRefGoogle Scholar
Turner, J. 1970. Post-Neolithic disturbance of British vegetation. In Walker, D. & West, R.G. (eds), Studies in the Vegetational History of the British Isles, 97116. Cambridge: University PressGoogle Scholar
Wainwright, G. 1968. The excavation of a Durotrigian farmstead near Tollard Royal in Cranborne Chase. Proceedings of the Prehistoric Society 34, 102–47CrossRefGoogle Scholar
Wainwright, G. 1979. Gussage All Saints: an Iron Age Settlement in Dorset. London: HMSOGoogle Scholar
Waller, M. 1993. Flandrian vegetational history of south-eastern England: Pollen data from Pannel Bridge, East Sussex. New Phytologist 124, 345–69CrossRefGoogle ScholarPubMed
Waller, M. 1994. The Tilia decline and paludification in Southern England. Holocene Studies 4, 430–3CrossRefGoogle Scholar
Waller, M. & Hamilton, S.D. 2000. Vegetational history of the English chalklands: a mid-Holocene pollen sequence from Caburn, East Sussex. Journal of Quaternary Science 15(3), 253–733.0.CO;2-8>CrossRefGoogle Scholar
Warne, C. 1866. The Celtic Tumuli of Dorset. London: John Russell SmithGoogle Scholar
Waton, P.V. 1982. Man's impact on the chalklands: some new pollen evidence. In Bell, M. & Limbrey, S. (eds), Archaeological Aspects of Woodland Ecology, 7591. Oxford: British Archaeological Report S146Google Scholar
Waton, P.V. 1982b. A Palynological Study of the Impact of Man on the Landscape of Central Southern England, with Special Reference to the Chalklands. Unpublished PhD thesis, University of SouthamptonGoogle Scholar
Williams, D. & Milles, A. 1987. Snails by numbers. Circaea 5, 1819Google Scholar
Zuk, L. & Palmer, R. 2001. The Archaeology of Wyke Down, Dorset: aerial photographic survey. Cambridge: Air Photo Services, unpublished reportGoogle Scholar