Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-31T18:05:40.587Z Has data issue: false hasContentIssue false

Maximizing weighted sums of binomial coefficients using generalized continued fractions

Published online by Cambridge University Press:  27 August 2024

S.P. Glasby*
Affiliation:
Center for the Mathematics of Symmetry and Computation, University of Western Australia, Perth 6009, Australia (Stephen.Glasby@uwa.edu.au)
G.R. Paseman
Affiliation:
Sheperd Systems, UC Berkeley, USA (sheperdsystems@gmail.com)
*
*Corresponding author.

Abstract

Let $m,\,r\in {\mathbb {Z}}$ and $\omega \in {\mathbb {R}}$ satisfy $0\leqslant r\leqslant m$ and $\omega \geqslant 1$. Our main result is a generalized continued fraction for an expression involving the partial binomial sum $s_m(r) = \sum _{i=0}^r\binom{m}{i}$. We apply this to create new upper and lower bounds for $s_m(r)$ and thus for $g_{\omega,m}(r)=\omega ^{-r}s_m(r)$. We also bound an integer $r_0 \in \{0,\,1,\,\ldots,\,m\}$ such that $g_{\omega,m}(0)<\cdots < g_{\omega,m}(r_0-1)\leqslant g_{\omega,m}(r_0)$ and $g_{\omega,m}(r_0)>\cdots >g_{\omega,m}(m)$. For real $\omega \geqslant \sqrt 3$ we prove that $r_0\in \{\lfloor \frac {m+2}{\omega +1}\rfloor,\,\lfloor \frac {m+2}{\omega +1}\rfloor +1\}$, and also $r_0 =\lfloor \frac {m+2}{\omega +1}\rfloor$ for $\omega \in \{3,\,4,\,\ldots \}$ or $\omega =2$ and $3\nmid m$.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bosma, Wieb, Cannon, John and Playoust, Catherine. The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235265, Computational algebra and number theory (London, 1993).CrossRefGoogle Scholar
Byun, S. H. and Poznanović, S.. On the maximum of the weighted binomial sum $(1+a)^{-r}\sum _{i=0}^r\binom{m}{i}a^i$. Discrete Math. 347 (2024), 113925.CrossRefGoogle Scholar
Glasby, S. P., Magma computer code for Remark 5.4, https://stephenglasby.github.io/BerryEsseenMagmaCode.Google Scholar
Glasby, S. P. and Paseman, G. R.. On the maximum of the weighted binomial sum $2^{-r}\sum _{i=0}^r\binom{m}{i}$. Electron. J. Combin. 29 (2022), article P2.5.CrossRefGoogle Scholar
Granville, Andrew, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. In Organic mathematics (Burnaby, BC, 1995), pp. 253–276. CMS Conf. Proc., Vol. 20 (Amer. Math. Soc., Providence, RI, 1997).Google Scholar
Ling, San and Xing, Chaoping. Coding theory. A first course (Cambridge University Press, Cambridge, 2004), xii+222 pp.CrossRefGoogle Scholar
Nagaev, S. V. and Chebotarev, V. I.. On the bound of proximity of the binomial distribution to the normal one. Theory Probab. Appl. 56 (2012), 213239.CrossRefGoogle Scholar
Olds, C. D.. Continued fractions (Random House, New York, 1963), viii+162 pp.CrossRefGoogle Scholar
Paseman, G., Poster ‘A continued fraction for a partial sum’, presented at the Short Communications Satellite 2022, concurrent with vICM2022. PDF found near https://scs-math.org/communications.Google Scholar
Stănică, P.. Good lower and upper bounds on binomial coefficients. JIPAM. J. Inequal. Pure Appl. Math. 2 (2001). Article 30.Google Scholar
Worsch, T., Lower and upper bounds for (sums of) binomial coefficients, www.researchgate.net/scientific-contributions/Thomas-Worsch-18934007.Google Scholar