Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-26T18:55:24.021Z Has data issue: false hasContentIssue false

On the differential invariants of a linear ordinary differential equation

Published online by Cambridge University Press:  14 November 2011

Joseph P. S. Kung
Affiliation:
Department of Mathematics, North Texas State University, Denton, Texas 76203, U.S.A.
Gian-Carlo Rota
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

Synopsis

Let y(n) + a1y(n−1 +…+ an−1y(1) + an = 0 (*) be a linear ordinary differential equation of order n. A (relative) differential invariant of (*) is a differential polynomial function π(xi) defined on the solution space of (*) satisfying: there is an integer g such that for all invertible linear transformations α of V into itself, π(αxi) = (det α)βπ(xi). We prove in a purely algebraic manner the following two theorems: A. The differential invariants of (*) are generated algebraically by the Wronskian W and the coefficients ala2, …, an of (*). B. Every generic differential relation (i.e. differential relation which holds for every linear ordinary differential equation of order n) among W, a1 …, an can be deduced algebraically from Abel's identity, W′ = −a1W. The second theorem may be considered as an algebraic version of the existence theorem for linear ordinary differential equations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Appell, P.. Sur les équations différentielles linéaires. Ann. École Norm. Sup. 10 (1881), 391424.CrossRefGoogle Scholar
2Casorati, F.. II calcolo delle differenze finite interpretato ed accresciuto di nuovi teoremi. Ann. Mat. 10 (18801882), 10–45, 154157.CrossRefGoogle Scholar
3Church, A.. Remarks on the elementary theory of differential equations as an area of research. Lecture presented at the Colloquium of the Academie Internationale de Philosophie des Sciences, Brussels, September 3, 1962.Google Scholar
4Désarménien, J., Kung, J. P. S. and Rota, G.-C.. Invariant theory, Young bitableaux, and combinatorics. Advances in Math. 27 (1978), 6392.CrossRefGoogle Scholar
5Doubilet, P., Rota, G.-C. and Stein, J.. On the foundations of combinatorial theory IX. Combinatorial methods in invariant theory. Studies in Appl. Math. 53 (1974), 185216.Google Scholar
6Kolchin, E. R.. Differential Algebra and Algebraic Groups (New York: Academic, 1973).Google Scholar
7Mead, D. G.. Determinantal ideals, identities and the Wronskian. Pacific J. Math. 42 (1972), 167175.CrossRefGoogle Scholar
8Mead, D. G. and McLemore, B. D.. Ritt's question on the Wronskian. Pacific J. Math. 35 (1970), 467472.CrossRefGoogle Scholar
9Meschkowski, H.. Differenzengleichungen (Göttingen: Vendenhoeck and Rupert, 1959).Google Scholar
10Ore, O., Formale Theorie der linearen Differentialgleichungen I, II. J. Reine Angew. Math. 167 (1932), 221234; 168 (1933), 233252.CrossRefGoogle Scholar
11Picard, E.. Analogies entre la Théorie des Equations Différentielles Linéaires et la Théories des Équations Algebraiques (Paris: Gauthier-Villars, 1936).Google Scholar
12Ritt, J. F.. Differential Equations from the Algebraic Standpoint, Amer. Math. Soc. Colloq. Publ. vol. 14 (New York: Amer. Math. Soc., 1932).Google Scholar
13Ritt, J. F.. Integration in Finite Terms (New York: Columbia Univ. Press, 1948).CrossRefGoogle Scholar
14Ritt, J. F.. Differential Algebra, Amer. Math. Soc. Colloq. Publ. vol. 33 (New York: Amer. Math. Soc., 1950).Google Scholar
15Pincherle, S.. Le Operazioni Distributive e le loro Applicazioni all'Analisi (Bologna: Zanichelli, 1901).Google Scholar
16Schlesinger, L.. Handbuch der Theorie der Lineardifferentialgleichungen, vol. I, II, and III (Leipzig: Teubner, 1897).Google Scholar