Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T19:13:55.726Z Has data issue: false hasContentIssue false

Almost-periodic forcing for a wave equation with a nonlinear, local damping term

Published online by Cambridge University Press:  14 November 2011

Alain Haraux
Affiliation:
Analyse Numerique, Tour 55–65, 5e étage, Université Pierre et Marie Curie, 4, place Jussieu, 75230 Paris Cedex 05, France

Synopsis

Let Ω⊂ℝnbe a bounded open domain and T = ∂Ω. It β is a maximal monotone graph in ℝ×ℝ with 0ϵβ(0), and f: ℝ×Ω→ℝ is measurable with t→ f(t,.) S2-almost periodic as a function ℝ→L2(Ω), we consider the nonlinear hyperbolic equation

We show that:

  • (i) if ゲ is strictly increasing and (1) has a solution ω on ℝ with [ω, Əω/Ət] almost periodic: , for any solution of (1) there exists with u(t,.)–ω(t,.)—ξin

  • (ii) if β is single valued and everywhere defined, the existence of ω as above implies that, for every solution of (1), there exists Ϛ(t, x) with ә2Ϛ/әt2–0△Ϛ = in ℝ×Ω and u(t,.)–ω(t,.)—0 in as t → +∞

  • (iii) if β–1 is uniformly continuous and ゲ satisfies some growth assumption (depending on N), for every f as above, there exists ω solution of (1) on ℝ with [ω, Əω/Ət] almost periodic: ℝ → .

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amerio, L. and Prouse, G.. On the nonlinear wave equation, I, II. Rend. Accad. Naz. Lincei 44 (1968).Google Scholar
2.Amerio, L. and Prouse, G.. Uniqueness and almost-periodicity for a nonlinear wave equation. Rend. Accad. Naz. Lincei 56 1 (1969).Google Scholar
3. Benilan, Ph. and Brezis, H.. Solutions faibles d'équations d'evolution dans les espaces de Hilbert. Ann. Inst. Fourier (Grenoble) 22 (1972), 311329.CrossRefGoogle Scholar
4.Biroli, M.. Sur les solutions bornées et presque periodiques des équations et inéquations d'évolution. Ann. Mat. Pura Appl. 93 (1972), 179.CrossRefGoogle Scholar
5.Biroli, M.. Bounded or almost-periodic solutions of the nonlinear membrane equation. Ricerche Mat. 22 (1973), 190202.Google Scholar
6.Biroli, M. and Haraux, A.. Asymptotic behavior for an almost periodic, strongly dissipative wave equation. J. Differential Equations 38 (1980), 422440.CrossRefGoogle Scholar
7.Brezis, H.. Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert (Amsterdam: North-Holland, 1973).Google Scholar
8.Brezis, H.. Problémes unilatéraux. J. Math. Pures Appl. 51 (1972), 1168.Google Scholar
9.Brezis, H. and Lions, J. L.. Sur certains problèmes unilatéraux hyperboliques. C. R. Acad. Sci. Paris Sér. A 264 (1967), 928931.Google Scholar
10.Browder, F. and Petryshyn, W.. The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Amer. Math. Soc. 72 (1966), 571575.CrossRefGoogle Scholar
11.Bruck, R.. Asymptotic convergence of nonlinear contraction semi-groups in Hilbert spaces. J. Funct. Anal. 18 (1975), 1526.CrossRefGoogle Scholar
12.Dafermos, C. M.. An invariance principle for compact processes. J. Differential Equations 9 (1971), 239252.CrossRefGoogle Scholar
13.Dafermos, C. M.. Semiflows associated with compact and uniform processes. Math. Systems Theory 8 (1974), 142149.CrossRefGoogle Scholar
14.Dafermos, C. M.. Almost periodic processes and almost periodic solutions of evolution equations. Proceedings of a University of Florida International Symposium, 4357 (New York: Academic Press, 1977).Google Scholar
15.Dafermos, C. M. and Slemrod, M.. Asymptotic behavior of non linear contraction semi-groups. J. Funct. Anal. 12 (1973), 97106.CrossRefGoogle Scholar
16.Fink, A. M.. Almost periodic differential equations. Lecture Notes in Mathematics 377 (Berlin: Springer, 1974).Google Scholar
17.Haraux, A.. Opérateurs maximaux monotones et oscillations forcées non lineaires (Thèse Univ. Paris VI, 1978).Google Scholar
18.Haraux, A.. Comportement à l'infini pour certains systèmes dissipatifs non lineaires. Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 213234.CrossRefGoogle Scholar
19.Haraux, A.. Nonlinear Evolution Equations-Global Behavior of Solutions. Lecture Notes in Mathematics 841 (Berlin: Springer, 1981).Google Scholar
20.Haraux, A.. Generalized almost periodic solutions and ergodic properties of quasi-autonomous dissipative systems. J. Differential Equations, to appear.Google Scholar
21.Ishii, H.. On the existence of almost periodic complete trajectories for contractive almost periodic processes. J. Differential Equations 43, 1 (1982), 6672.CrossRefGoogle Scholar
22.Lions, J. L.. Quelques méthodes de résolution des problèmes aux limites non linéaires (Paris: Dunod, 1969).Google Scholar
23.Lions, J. L. and Strauss, W. A.. Some non-linear evolution equations. Bull. Soc. Math. France 93 (1965), 4396.CrossRefGoogle Scholar
24.Opial, Z.. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 591597.CrossRefGoogle Scholar
25.Prodi, G.. Soluzioni periodiche di equazioni a derivati parziali di tipo iperbolico non lineari. Ann. Mat. Pura Appl. 42 (1956), 2549.CrossRefGoogle Scholar
26.Prodi, G.. Soluzioni periodiche della equazione delle onde con termine dissipativo non lineare. Rend. Sem. Mat. Univ. Padova 33 (1966).Google Scholar
27.Prouse, G.. Soluzioni quasi periodiche della equazione delle onde con termine dissipativo non lineare, I, II, III, IV. Rend. Accad. Naz. Lincei 3839 (1965).Google Scholar