Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-17T21:31:39.739Z Has data issue: false hasContentIssue false

Desingularization of 2D elliptic free-boundary problem with non-autonomous nonlinearity

Published online by Cambridge University Press:  30 April 2024

Jie Wan*
Affiliation:
School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, People's Republic of China (wanjie@bit.edu.cn)

Abstract

In this paper, we consider the existence and limiting behaviour of solutions to a semilinear elliptic equation arising from confined plasma problem in dimension two

\[ \begin{cases} -\Delta u=\lambda k(x)f(u) & \text{in}\ D,\\ u= c & \displaystyle\text{on}\ \partial D,\\ \displaystyle - \int_{\partial D} \frac{\partial u}{\partial \nu}\,{\rm d}s=I, \end{cases} \]
where $D\subseteq \mathbb {R}^2$ is a smooth bounded domain, $\nu$ is the outward unit normal to the boundary $\partial D$, $\lambda$ and $I$ are given constants and $c$ is an unknown constant. Under some assumptions on $f$ and $k$, we prove that there exists a family of solutions concentrating near strict local minimum points of $\Gamma (x)=({1}/{2})h(x,\,x)- ({1}/{8\pi })\ln k(x)$ as $\lambda \to +\infty$. Here $h(x,\,x)$ is the Robin function of $-\Delta$ in $D$. The prescribed functions $f$ and $k$ can be very general. The result is proved by regarding $k$ as a $measure$ and using the vorticity method, that is, solving a maximization problem for vorticity and analysing the asymptotic behaviour of maximizers. Existence of solutions concentrating near several points is also obtained.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnol'd, V. I.. Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Soviet Math. Doklady 162 (1965), 773777. [Translation of Dokl. Akad. Nauk SSSR, 162 (1965), 975–998].Google Scholar
Arnol'd, V. I.. On an a priori estimate in the theory of hydrodynamic stability. Amer. Math. Soc. Transl. 79 (1969), 267269. [Translation of Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1966), 3–5.]Google Scholar
Bandle, C. and Sperb, R. P.. Qualitative behavior and bounds in a nonlinear plasma problem. SIAM J. Math. Anal. 14 (1983), 142151.CrossRefGoogle Scholar
Bartolucci, D. and Jevnikar, A.. On the uniqueness and monotonicity of solutions of free boundary problems. J. Differ. Equ. 306 (2022), 152188.CrossRefGoogle Scholar
Bartolucci, D. and Jevnikar, A.. New universal estimates for free boundary problems arising in plasma physics. Proc. Amer. Math. Soc. 150 (2022), 673686.CrossRefGoogle Scholar
Bartsch, T., Pistoia, A. and Weth, T.. N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-Poisson and the Lane-Emden-Fowler equations. Commun. Math. Phys. 297 (2010), 653686.CrossRefGoogle Scholar
Berestycki, H. and Brezis, H.. Sur certains problèmes de frontière libre. C. R. Acad. Sci. Paris 283 (1976), 10911094.Google Scholar
Berestycki, H. and Brezis, H.. On a free boundary problem arising in plasma physics. Nonlinear Anal. 4 (1980), 415436.CrossRefGoogle Scholar
Berestycki, H. and Lions, P. L.. Nonlinear scalar field equations I. Arch. Ration. Mech. Anal. 82 (1983), 313346.CrossRefGoogle Scholar
Caffarelli, L. A. and Friedman, A.. Asymptotic estimates for the plasma problem. Duke Math. J. 47 (1980), 705742.CrossRefGoogle Scholar
Cao, D., Guo, Y., Peng, S. and Yan, S.. Local uniqueness for vortex patch problem in incompressible planar steady flow. J. Math. Pures Appl. 131 (2019), 251289.CrossRefGoogle Scholar
Cao, D., Liu, Z. and Wei, J.. Regularization of point vortices for the Euler equation in dimension two. Arch. Ration. Mech. Anal. 212 (2014), 179217.CrossRefGoogle Scholar
Cao, D., Peng, S. and Yan, S.. Multiplicity of solutions for the plasma problem in two dimensions. Adv. Math. 225 (2010), 27412785.CrossRefGoogle Scholar
Cao, D., Peng, S. and Yan, S.. Planar vortex patch problem in incompressible steady flow. Adv. Math. 270 (2015), 263301.CrossRefGoogle Scholar
Cao, D., Wan, J., Wang, G. and Zhan, W.. Asymptotic behaviour of global vortex rings. Nonlinearity 35 (2022), 36803705.CrossRefGoogle Scholar
Cao, D., Wan, J. and Zhan, W.. Desingularization of vortex rings in 3 dimensional Euler flows. J. Differ. Equ. 270 (2021), 12581297.CrossRefGoogle Scholar
Cao, D., Wang, G. and Zhan, W.. Desingularization of vortices for 2D steady Euler flows via the vorticity method. SIAM J. Math. Anal. 52 (2020), 53635388.CrossRefGoogle Scholar
Dávila, J., del Pino, M., Musso, M. and Wei, J.. Gluing methods for vortex dynamics in Euler flows. Arch. Ration. Mech. Anal. 235 (2020), 14671530.CrossRefGoogle Scholar
del Pino, M., Kowalczyk, M. and Musso, M.. Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24 (2005), 4781.CrossRefGoogle Scholar
de Valeriola, S. and Van Schaftingen, J.. Desingularization of vortex rings and shallow water vortices by semilinear elliptic problem. Arch. Ration. Mech. Anal. 210 (2013), 409450.CrossRefGoogle Scholar
Esposito, P., Musso, M. and Pistoia, A.. Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent. J. Differ. Equ. 227 (2006), 2968.CrossRefGoogle Scholar
Flucher, F. and Wei, J.. Asymptotic shape and location of small cores in elliptic free-boundary problems. Math. Z. 228 (1998), 638703.CrossRefGoogle Scholar
Kirchhoff, G.. Vorlesungen über mathematische physik (Leipzig: Teubner, 1876).Google Scholar
Li, Y. and Peng, S.. Multiple solutions for an elliptic problem related to vortex pairs. J. Differ. Equ. 250 (2011), 34483472.CrossRefGoogle Scholar
Li, Y. and Peng, S.. Multi-peak solutions to two types of free boundary problems. Calc. Var. Partial Differ. Equ. 54 (2015), 163182.CrossRefGoogle Scholar
Lieb, E. H. and Loss, M., Analysis, 2nd edn. Graduate Studies in Mathematics, Vol. 14 (Providence, RI: American Mathematical Society, 2001).Google Scholar
Lin, C. C.. On the motion of vortices in two dimension - I. Existence of the Kirchhoff–Routh function. Proc. Natl. Acad. Sci. USA 27 (1941), 570575.CrossRefGoogle ScholarPubMed
Liu, Z.. Multiple solutions for a free boundary problem arising in plasma physics. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 965990.CrossRefGoogle Scholar
Puel, J. P.. Sur un problème de valuer propre non linéaire et de frontière libre. C. R. Acad. Sci. Paris 284 (1977), 861863.Google Scholar
Routh, E. J.. Some applications of conjugate functions. Proc. Lond. Math. Soc. 12 (1881), 7389.Google Scholar
Schaeffer, D.. Non-uniqueness in the equilibrium shape of a confined plasma. Commun. Partial Differ. Equ. 2 (1977), 587600.CrossRefGoogle Scholar
Shibata, M.. Asymptotic shape of a least energy solution to an elliptic free-boundary problem with nonautonomous nonlinearity. Asymptot. Anal. 31 (2002), 142.Google Scholar
Shibata, M.. Asymptotic shape of a solution for the plasma problem in higher dimensional spaces. Commun. Pure Appl. Anal. 2 (2003), 259275.CrossRefGoogle Scholar
Smets, D. and Van Schaftingen, J.. Desingularization of vortices for the Euler equation. Arch. Ration. Mech. Anal. 198 (2010), 869925.CrossRefGoogle Scholar
Temam, R.. A nonlinear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60 (1975), 5173.CrossRefGoogle Scholar
Temam, R.. Remarks on a free boundary value problem arising in plasma physics. Commun. Partial Differ. Equ. 2 (1977), 563585.CrossRefGoogle Scholar
Turkington, B.. On steady vortex flow in two dimensions. I, II. Commun. Partial Differ. Equ. 8 (1983), 9991030, 1031–1071.CrossRefGoogle Scholar
Wei, J.. Multiple condensations for a nonlinear elliptic equation with sub-critical growth and critical behaviour. Proc. Edinb. Math. Soc. 44 (2001), 631660.CrossRefGoogle Scholar
Wei, J., Ye, D. and Zhou, F.. Bubbling solutions for an anisotropic Emden-Fowler equation. Calc. Var. Partial Differ. Equ. 28 (2007), 217247.CrossRefGoogle Scholar