Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-09T06:29:32.121Z Has data issue: false hasContentIssue false

Estimates for the order of Nevanlinna matrices and a Berezanskii-type theorem

Published online by Cambridge University Press:  26 January 2019

Raphael Pruckner
Affiliation:
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8–10/101 1040 Wien, AUSTRIA (raphael.pruckner@tuwien.ac.at; harald.woracek@tuwien.ac.at)
Harald Woracek
Affiliation:
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8–10/101 1040 Wien, AUSTRIA (raphael.pruckner@tuwien.ac.at; harald.woracek@tuwien.ac.at)

Abstract

We give an upper estimate for the order of the entire functions in the Nevanlinna parameterization of the solutions of an indeterminate Hamburger moment problem. Under a regularity condition this estimate becomes explicit and takes the form of a convergence exponent. Proofs are based on transformations of canonical systems and I.S.Kac' formula for the spectral asymptotics of a string. Combining with a lower estimate from previous work, we obtain a class of moment problems for which order can be computed. This generalizes a theorem of Yu.M.Berezanskii about spectral asymptotics of a Jacobi matrix (in the case that order is ⩽ 1/2).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berezanskiĭ, Yu. M.. Expansion according to eigenfunction of a partial difference equation of order two. Trudy Moskov. Mat. Obšč. 5 (1956), 203268.Google Scholar
2Berg, C. and Pedersen, H. L.. On the order and type of the entire functions associated with an indeterminate Hamburger moment problem. Ark. Mat. 32 (1994), 111.Google Scholar
3 Berg, C. and Pedersen, H. L.. Logarithmic order and type of indeterminate moment problems. In Difference equations, special functions and orthogonal polynomials, pp. 5179 (Hackensack, NJ: World Sci. Publ., 2007). With an appendix by Walter Hayman.Google Scholar
4Berg, C. and Szwarc, R.. On the order of indeterminate moment problems. Adv. Math. 250 (2014), 105143.Google Scholar
5de Branges, L.. Some Hilbert spaces of entire functions. II. Trans. Amer. Math. Soc. 99 (1961), 118152.Google Scholar
6de Branges, L.. Hilbert spaces of entire functions (Englewood Cliffs, N.J.: Prentice-Hall Inc., 1968).Google Scholar
7Fleige, A.. Spectral theory of indefinite Krein-Feller differential operators. Mathematical Research, vol. 98 (Berlin: Akademie Verlag, 1996).Google Scholar
8Freiberg, U.. Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets. Forum Math. 17 (2005), 87104.Google Scholar
9Gohberg, I. C. and Krein, M. G.. Introduction to the theory of linear nonselfadjoint operators. Translated from the Russian by Feinstein, A.. Translations of Mathematical Monographs, vol. 18 ( Providence, R.I.: American Mathematical Society, 1969).Google Scholar
10Gohberg, I. C. and Krein, M. G.. , Moscow, 1967. English translation: Theory and applications of Volterra operators in Hilbert space. Translations of Mathematical Monographs, vol. 24 (Providence, R.I.: American Mathematical Society, 1970).Google Scholar
11Hassi, S., de Snoo, H. and Winkler, H.. Boundary-value problems for two-dimensional canonical systems. Integr. Equ. Oper. Theory 36 (2000), 445479.Google Scholar
12Kac, I. S.. On Hilbert spaces generated by monotone Hermitian matrix-functions. Har′kov Gos. Univ. Uč. Zap. 34 = Zap. Mat. Otd. Fiz.-Mat. Fak. i Har′kov. Mat. Obšč. (4), 22 (1951), 1950, 95113.Google Scholar
13Kac, I. S.. Linear relations, generated by a canonical differential equation on an interval with a regular endpoint, and expansibility in eigenfunctions. VINITI Deponirovannye Nauchnye Raboty 195 (1985), 50 pp. b.o. 720. Deposited in Ukr NIINTI, No. 1453, 1984.Google Scholar
14Kac, I. S.. Expansibility in eigenfunctions of a canonical differential equation on an interval with singular endpoints and associated linear relations. VINITI Deponirovannye Nauchnye Raboty 282 (1986), 64pp. b.o. 1536. Deposited in Ukr NIINTI, No. 2111, 1986.Google Scholar
15Kac, I. S.. Integral estimates for the distribution of the spectrum of a string. Sibirsk. Mat. Zh. 27 (1986), 6274, 221.Google Scholar
16Kac, I. S.. Tightness of the spectrum of a singular string. Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1990), 2330.Google Scholar
17Kac, I. S.. Inclusion of the Hamburger power moment problem in the spectral theory of canonical systems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 262(Issled. po Linein. Oper. i Teor. Funkts. 27):147–171, 234, 1999. English translation: J. Math. Sci. (New York) 110 (2002), 29913004.Google Scholar
18Kac, I. S. and Krein, M. G.. R-functions – Analytic functions mapping the upper half plane into itself. Izdat (Moscow: Mir, 1968), 629647, Addition I in F.V.Atkinson, (Russian translation). English translation: Amer. Math. Soc. Transl. (2) 103 (1974), 1–19.Google Scholar
19Kaltenbäck, M. and Woracek, H.. Pontryagin spaces of entire functions. IV. Acta Sci. Math. (Szeged) 72 (2006), 709835.Google Scholar
20Kaltenbäck, M. and Woracek, H.. Pontryagin spaces of entire functions. VI. Acta Sci. Math. (Szeged) 76 (2010), 511560.Google Scholar
21Kaltenbäck, M. and Woracek, H.. Pontryagin spaces of entire functions V. Acta Sci. Math. (Szeged) 77 (2011), 223336.Google Scholar
22Kaltenbäck, M., Winkler, H. and Woracek, H.. Singularities of generalized strings. In Operator theory and indefinite inner product spaces. Oper. Theory Adv. Appl., vol. 163, pp. 191248 (Basel: Birkhäuser, 2006).Google Scholar
23Kaltenbäck, M., Winkler, H. and Woracek, H.. Strings, dual strings, and related canonical systems. Math. Nachr. 280 (2007), 15181536.Google Scholar
24Krein, M. G.. On the theory of entire matrix functions of exponential type. Ukrain. Mat. Žurnal 3 1951, 164173. English translation in Oper. Theory Adv. Appl. 95 (1997), 361–371.Google Scholar
25Krein, M. G. and Langer, H.. On some extension problems which are closely connected with the theory of Hermitian operators in a space $\Pi _{\kappa }$. III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Part I. Beiträge Anal., (loose errata), 14 (1979), 2540.Google Scholar
26Krein, M. G. and Langer, H.. On some extension problems which are closely connected with the theory of Hermitian operators in a space $\Pi _{\kappa }$. III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Part II. Beiträge Anal. 15 (1981), 2745.Google Scholar
27Krein, M. G. and Langer, H.. On some continuation problems which are closely related to the theory of operators in spaces $\Pi _\kappa $. IV. Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions. J. Operator Theory 13 (1985), 299417.Google Scholar
28Langer, H. and Winkler, H.. Direct and inverse spectral problems for generalized strings. Integral Equations Operator Theory 30 (1998), 409431, Dedicated to the memory of Mark Grigorievich Krein (1907–1989).Google Scholar
29Levin, B. Ja.. Distribution of zeros of entire functions, revised edn. Translations of Mathematical Monographs, vol. 5 (Providence, R.I.: American Mathematical Society, 1980). Translated from the Russian by Boas, R. P., Danskin, J. M., Goodspeed, F. M., Korevaar, J., Shields, A. L. and Thielman, H. P..Google Scholar
30Pruckner, R. and Woracek, H.. Estimates for order of Nevanlinna matrices and a Berezanskii-type theorem (extended preprint). 27 pp., ASC Report 21, Vienna University of Technology, 2016. http://www.asc.tuwien.ac.at/preprint/2016/asc21x2016.pdf.Google Scholar
31Pruckner, R., Romanov, R. and Woracek, H.. Bounds on order of indeterminate moment sequences. Constr. Approx. 46 (2017), 199225.Google Scholar
32Winkler, H.. The inverse spectral problem for canonical systems. Integral Equations Operator Theory 22 (1995), 360374.Google Scholar