Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T15:36:51.889Z Has data issue: false hasContentIssue false

Linear initial value problems with a singular perturbation of hyperbolic type

Published online by Cambridge University Press:  14 November 2011

R. Geel
Affiliation:
Ubbo Emmius Institute, Department of Mathematics, Postbus 2056, 9704 CB Groningen, The Netherlands

Synopsis

This paper deals with initial value problems in ℝ2 which are governed by a hyperbolic differential equation containing a small positive factor ε in front of the second order part of the differential operator. Pointwise a priori estimates for the solution are established by means of an energy integral method. With the help of these estimates it is shown that the solution admits an asymptotic expansion into powers of ε which is uniformly valid in compact subsets of ℝ2. All results are obtained under the assumption that the characteristics of the first order part of the differential operator satisfy a so-called “timelike” condition. A discussion of the concepts “timelike” and “spacelike” is given.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Blondel, J. M.. Etude de deux problèmes singuliers, relatifs aux équations aux dérivées partielles, linéaires et hyperboliques, du second ordre. J. Math. Pures Appl. 40 (1961), 247299.Google Scholar
2Blondel, J. M.. Perturbation singulière pour une équation aux dérivées partielles du second ordre, linéaire, du type hyperbolique normal. C.R. Acad. Sci. Paris 257 (1963), 353355.Google Scholar
3Cole, J. D.. Perturbation methods in applied mathematics (Waltham, Mass.: Blaisdell, 1968).Google Scholar
4Dzavadov, M. G.. The Cauchy problem for a hyperbolic equation with a small parameter multiplying the highest derivatives. Izv. Akad. Nauk Azerb. SSR Ser. Fiz.-Tehn. Mat. Nauk 6 (1963), 39.Google Scholar
5Dzavadov, M. G.. A mixed problem for a hyperbolic equation involving a small parameter with the leading derivatives. Soviet Math. Dokl. 4 [151153] (1963), 1400–1404.Google Scholar
6Garabedian, P. R.. Partial differential equations (New York: Wiley, 1964).Google Scholar
7Geel, R.. Singular perturbations of hyperbolic type (Thesis, Univ. of Amsterdam, 1978).Google Scholar
8Genet, J. and Madaune, M.. Perturbations singulières pour une classe de problèmes hyperboliques non linéaires; Proceedings of the conference on singular perturbations and boundary layer theory, Lyon, 1976; Lecture Notes in Mathematics 594, pp. 201230 (Berlin: Springer, 1977).Google Scholar
9Genet, J. and Pupion, G.. Perturbation singulière pour un problème mixte relatif à une équation aux dérivées partielles linéaire hyperbolique du second ordre. C.R. Acad. Sci. Paris 261 (1965), 39343937; 266 (1968), 489–492; 658–660.Google Scholar
10de Jager, E. M.. Singular perturbations of hyperbolic type. Nieuw Arch. Wisk. 23 (1975), 145172.Google Scholar
11Lions, J. L.. Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Lecture Notes in Mathematics 323 (Berlin: Springer, 1973).Google Scholar
12Madaune, M.. Perturbations singulières de type hyperbolique-hyperbolique non linéaire. Publ. Math, de Pau 1977.Google Scholar
13Roseau, M.. Asymptotic wave theory (Amsterdam: North Holland, 1976).Google Scholar
14Smith, D. R.. An asymptotic analysis of a certain hyperbolic Cauchy problem. SIAM J. Math. Anal. 2 (1971), 375392.CrossRefGoogle Scholar
15Smith, D. R. and Palmer, J. T.. On the behavior of the solution of the telegraphist's equation for large absorption. Arch. Rational Mech. Anal. 39 (1970), 146157.Google Scholar
16Weinstein, M. B. and Smith, D. R.. Comparison techniques for certain overdamped hyperbolic partial differential equations. Rocky Mountain J. Math. 6 (1976), 731742.Google Scholar
17Whitham, G. B.. Linear and nonlinear waves (New York: Wiley, 1974).Google Scholar