Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-07T22:05:17.601Z Has data issue: false hasContentIssue false

Lusin-type approximation of BD functions

Published online by Cambridge University Press:  14 November 2011

François B. Ebobisse
Affiliation:
Dipartimento di Matematica, Via F. Buonarroti 2, 56127 Pisa, Italy (ebobisse@paley.dm.unipi.it)

Extract

The purpose of this paper is to establish a Lusin-type approximation of functions with bounded deformation by Lipschitz or C1 functions. The main ingredients inthe proof of our result are the maximal function of the measure Eu, the ‘Poincaré-type’ result by Kohn and the approximate symmetric differentiability of BD functions by Ambrosio and others.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Acerbi, E. and Fusco, N.. Semicontinuity problems in the calculus of variations. Arch.Ration. Mech. Analysis 86 (1984), 125145.CrossRefGoogle Scholar
2Acerbi, E. and Fusco, N.. A regularity theorem for minimizers of quasi-convex integrals. Arch. Ration. Mech. Analysis 99 (1987), 261281.CrossRefGoogle Scholar
3Alberti, G.. Lusin, Atype property of gradients. J. Funct. Analysis 100 (1991), 110118.CrossRefGoogle Scholar
4Ambrosio, L.. On the lower semicontinuity of quasi-convex integrals in SBV(é,ℝk). Nonlinear Analysis Theory Methods Applic. 23 (1994), 405425.CrossRefGoogle Scholar
5Ambrosio, L., Coscia, A. and Maso, G. Dal. Fine properties of functions with bounded deformation. Arch. Ration. Mech. Analysis 139 (1997), 201238.CrossRefGoogle Scholar
6Anzellotti, G. and Giaquinta, M.. Existence of the displacement field for an elasto-plastic body subject to the Henky's law and von Mises yield condition. Manuscripta Math. 32 (1980), 101136.CrossRefGoogle Scholar
7Bellettini, G., Coscia, A. and Maso, G. Dal. Special functions of bounded deformation. Preprint SISSA, Trieste (1996).Google Scholar
8Giorgi, E. De and Ambrosio, L.. Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. 82 (1988), 199210.Google Scholar
9Ebobisse, F.. On lower semicontinuity of integral functionals in LD(é). Ric. Matematica. (In the press.)Google Scholar
10Ebobisse, F.. Fine properties of functions with bounded deformation and applications in variational problems. PhD thesis (University of Pisa, 1999).Google Scholar
11Evans, L. C.. Quasi-convexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Analysis 95 (1986), 227252.CrossRefGoogle Scholar
12Evans, L. C. and Gariepy, R.. Measure theory and fine properties of functions (Boca Raton, FL: CRC Press, 1992).Google Scholar
13Federer, H.. Geometric measure theory (Berlin: Springer, 1969).Google Scholar
14Hajlasz, P.. On approximate differentiability of functions with bounded deformations. Manuscripta Math. 91, (1996), 6172.CrossRefGoogle Scholar
15Kohn, R. V.. New estimates for deformations in terms of their strains. PhD thesis (Princeton University, 1979).Google Scholar
16Liu, F. C.. A Lusin type property of Sobolev functions. Indiana Univ. Math. J. 26 (1977), 645651.CrossRefGoogle Scholar
17Matthies, H., Strang, G. and Christiansen, E.. The saddle point of a differential program. In Energy methods in finite elements analysis (New York: Wiley, 1979).Google Scholar
18Michael, J. H. and Ziemer, W. P.. A Lusin type approximation of Sobolev functions by smooth functions. Contemp. Math. (AMS) 42 (1985), 135167.CrossRefGoogle Scholar
19Stein, E. M.. Singular integrals and differentiability properties of functions (Princeton University Press, 1970).Google Scholar
20Suquet, P. M.. Un espace fonctionel pour les équations de la plasticité. Ann. Fac. Toulouse 1 (1979), 7787.CrossRefGoogle Scholar
21Témam, R.. Mathematical problems in plasticity (Paris: Bordas, 1985).Google Scholar