Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-14T17:24:17.346Z Has data issue: false hasContentIssue false

On Calderon's problem for the connection Laplacian

Published online by Cambridge University Press:  05 January 2024

Ravil Gabdurakhmanov
Affiliation:
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK (mmrg@leeds.ac.uk; g.kokarev@leeds.ac.uk)
Gerasim Kokarev
Affiliation:
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK (mmrg@leeds.ac.uk; g.kokarev@leeds.ac.uk)

Abstract

We consider Calderón's problem for the connection Laplacian on a real-analytic vector bundle over a manifold with boundary. We prove a uniqueness result for this problem when all geometric data are real-analytic, recovering the topology and geometry of a vector bundle up to a gauge transformation and an isometry of the base manifold.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albin, P., Guillarmou, C., Tzou, L. and Uhlmann, G.. Inverse boundary problems for systems in two dimensions. Annal. Henri Poincaré 14 (2013), 15511571.CrossRefGoogle Scholar
Cekić, M.. The Calderón problem for connections. Comm. PDE 42 (2017), 17811836.Google Scholar
Cekić, M.. Calderón problem for Yang-Mills connections. J. Spectr. Theory 10 (2020), 463513.Google Scholar
Dos Santos Ferrreira, D., Kenig, C., Salo, M. and Uhlmann, G.. Limiting Carleman weights and anisotropic inverse problems. Invent. Math. 178 (2009), 119171.CrossRefGoogle Scholar
Eells, J. and Lemaire, L., Selected topics in harmonic maps. CBMS Regional Conference Series in Mathematics, 50. American Mathematical Society, Providence, RI, 1983. v+85 pp.Google Scholar
Gabdurakhmanov, R., On the Dirichlet-to-Neumann operator for the connection Laplacian. e-print arXiv:2112.13466.Google Scholar
Gabdurakhmanov, R., Harmonic maps, inverse problems, and related topics (PhD thesis. University of Leeds, 2023).Google Scholar
Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. p. xiv+517.CrossRefGoogle Scholar
Gromoll, D., Klingenberg, W. and Meyer, W., Riemannsche Geometrie im Großen. Lecture notes in Mathematics, Vol. 55 (Springer-Verlag, Berlin, New York, 1975), p. vi+287.Google Scholar
Guillarmou, C. and Tzou, L.. Identification of a connection from Cauchy data on a Riemann surface with boundary. Geom. Funct. Anal. 21 (2011), 393418.CrossRefGoogle Scholar
John, F., Plane waves and spherical means applied to partial differential equations (Interscience Publishers, New York, London, 1955). p. viii+172.Google Scholar
Kurylev, Y., Oksanen, L. and Paternain, G.. Inverse problems for the connection Laplacian. J. Diff. Geom. 110 (2018), 457494.Google Scholar
Lassas, M. and Uhlmann, G.. On determining the Riemannian manifold from the Dirichlet-to-Neumann map. Ann. Sci. École Norm. Sup. (5) 34 (2001), 771787.CrossRefGoogle Scholar
Lassas, M., Taylor, M. and Uhlmann, G.. The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary. Comm. Anal. Geom. 11 (2003), 207221.CrossRefGoogle Scholar
Lassas, M., Liimatainen, T. and Salo, M.. The Poisson embedding approach to the Calderón problem. Math. Ann. 377 (2020), 1967.CrossRefGoogle Scholar
Lassas, M., Liimatainen, T. and Salo, M.. The Calderon problem for the conformal Laplacian. Comm. Anal. Geom. 30 (2022), 11211184.Google Scholar
Lee, J. M. and Uhlmann, G.. Determining anisotropic real-analytic conductivities by boundary measurements. Comm. Pure Appl. Math. 42 (1989), 10971112.CrossRefGoogle Scholar
Lopatinskii, Y. B.. A fundamental system of solutions of an elliptic system of differential equations. Ukrain. Mat. Z. 3 (1951), 338.Google Scholar
Lopatinskii, Y. B.. Fundamental solutions of a system of differential equations of elliptic type. Ukrain. Mat. Z. 3 (1951), 290316.Google Scholar
Miranda, C., Partial differential equations of elliptic type. Second revised edition. Translated from the Italian by Zane C. Motteler. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band Vol. 2 (Springer-Verlag, New York-Berlin, 1970). p. xii+370.Google Scholar
Petrowsky, I. G.. Sur l'analyticité des solutions des systèms d’équations différentialle. Rec. Math. [Mat. Sbornik] 5 (1939), 370.Google Scholar
Shubin, M. A., Pseudodifferential operators and spectral theory. Translated from the 1978 Russian original. 2nd ed (Springer-Verlag, Berlin, 2001).Google Scholar
Taylor, M. E., Partial differential equations. II. Qualitative studies of linear equations. Applied Mathematical Sciences, Vol. 116 (Springer-Verlag, New York, 1996).Google Scholar
Trèves, F., Introduction to pseudodifferential and Fourier integral operators. Vol. 1. Pseudodifferential operators. University Series in Mathematics (Plenum Press, New York-London, 1980). p. xxvii+299+xi.Google Scholar