Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-20T05:56:21.530Z Has data issue: false hasContentIssue false

On the oscillation of certain second-order linear differential equations

Published online by Cambridge University Press:  09 December 2022

Yueyang Zhang*
Affiliation:
School of Mathematics and Physics, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian, Beijing, 100083, P.R. China (zyynszbd@163.com)

Abstract

This paper consists of three parts: First, letting $b_1(z)$, $b_2(z)$, $p_1(z)$ and $p_2(z)$ be nonzero polynomials such that $p_1(z)$ and $p_2(z)$ have the same degree $k\geq 1$ and distinct leading coefficients $1$ and $\alpha$, respectively, we solve entire solutions of the Tumura–Clunie type differential equation $f^{n}+P(z,\,f)=b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}$, where $n\geq 2$ is an integer, $P(z,\,f)$ is a differential polynomial in $f$ of degree $\leq n-1$ with coefficients having polynomial growth. Second, we study the oscillation of the second-order differential equation $f''-[b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}]f=0$ and prove that $\alpha =[2(m+1)-1]/[2(m+1)]$ for some integer $m\geq 0$ if this equation admits a nontrivial solution such that $\lambda (f)<\infty$. This partially answers a question of Ishizaki. Finally, letting $b_2\not =0$ and $b_3$ be constants and $l$ and $s$ be relatively prime integers such that $l> s\geq 1$, we prove that $l=2$ if the equation $f''-(e^{lz}+b_2e^{sz}+b_3)f=0$ admits two linearly independent solutions $f_1$ and $f_2$ such that $\max \{\lambda (f_1),\,\lambda (f_2)\}<\infty$. In particular, we precisely characterize all solutions such that $\lambda (f)<\infty$ when $l=2$ and $l=4$.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bank, S.. On the explicit determination of certain solutions of periodic differential equations. Complex Variables Theory Appl. 23 (1993), 101121.CrossRefGoogle Scholar
Bank, S. and Laine, I.. On the oscillation theory of $f''+Af=0$ where $A$ is entire. Bull. Amer. Math. Soc. 6 (1982), 9598.CrossRefGoogle Scholar
Bank, S. and Laine, I.. On the oscillation theory of $f''+Af=0$ where $A$ is entire. Trans. Amer. Math. Soc. 273 (1982), 351363.Google Scholar
Bank, S. and Laine, I.. Representations of solutions of periodic second order linear differential equations. J. Reine Angew. Math. 344 (1983), 121.Google Scholar
Bank., S. B., Laine, I. and Langley, J. K.. Oscillation results for solutions of linear differential equations in the complex domain. Res. Math. 16 (1989), 315.CrossRefGoogle Scholar
Bank, S. and Langley, J.. On the oscillation of solutions of certain linear differential equations in the complex domain. Proc. Edinburgh Math. Soc. 30 (1987), 455469.CrossRefGoogle Scholar
Bergweiler, W. and Eremenko, A.. On the Bank–Laine conjecture. J. Eur. Math. Soc. 19 (2017), 18991909.CrossRefGoogle Scholar
Bergweiler, W. and Eremenko, A.. Quasiconformal surgery and linear differential equations. J. Anal. Math. 137 (2019), 751812.CrossRefGoogle Scholar
Chiang, Y. M.. On the zero-free solutions of linear periodic differential equations in the complex plane. Res. Math. 38 (2000), 213225.CrossRefGoogle Scholar
Chiang, Y. M. and Ismail, M. E.. On value distribution theory of second order periodic ODEs, special functions and orthogonal polynomials. Canad. J. Math. 58 (2006), 726767.CrossRefGoogle Scholar
Chiang, Y. M. and Yu, G. F.. Galoisian approach to complex oscillation theory of some Hill equations. Math. Scand. 124 (2019), 102131.CrossRefGoogle Scholar
Gundersen, G. G.. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. London Math. Soc. 37 (1988), 88104.CrossRefGoogle Scholar
Gundersen, G. G., The mathematical work of Ilpo Laine. In Proceedings of the Workshop on Complex Analysis and its Applications to Differential and Functional Equations, Publ. Univ. East. Finl. Rep. Stud. For. Nat. Sci., Vol. 14, pp. 1–26 (Univ. East. Finl., Fac. Sci. For., Joensuu, 2014).Google Scholar
Hayman, W. K., Meromorphic functions. Oxford Mathematical Monographs (Clarendon Press, Oxford, 1964).Google Scholar
Heittokangas, J., Ishizaki, K., Laine, I. and Tohge, K.. Complex oscillation and nonoscillation results. Trans. Amer. Math. Soc. 372 (2019), 61616182.CrossRefGoogle Scholar
Heittokangas, J., Ishizaki, K., Laine, I. and Tohge, K.. Exponential polynomials in the oscillation theory. J. Differ. Equ. 272 (2021), 911937.CrossRefGoogle Scholar
Herold, H., Differentialgleichungen im Komplexen. (German) Studia Mathematica: Skript, Vol. 2. (Vandenhoeck & Ruprecht, Göttingen, 1975).Google Scholar
Holland, A. S. B., Introduction to the theory of entire functions. Pure and Applied Mathematics, Vol. 56. (Academic Press [a subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973).Google Scholar
Ishizaki, K.. An oscillation result for a certain linear differential equation of second order. Hokkaido Math. J. 26 (1997), 421434.CrossRefGoogle Scholar
Ishizaki, K. and Tohge, K.. On the complex oscillation of some linear differential equations. J. Math. Anal. Appl. 206 (1997), 503517.CrossRefGoogle Scholar
Katajamäki, K., Algebroid solutions of binomial and linear differential equations. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, Vol. 90, p. 48 (Academia Scientiarum Fennica, Helsinki, 1993).Google Scholar
Kovacic, J. J.. An algorithm for solving second order linear homogeneous differential equations. J. Sym. Comput. 2 (1986), 343.CrossRefGoogle Scholar
Laine, I., Nevanlinna theory and complex differential equations. De Gruyter Studies in Mathematics, Vol. 15 (Walter de Gruyter & Co., Berlin, 1993).CrossRefGoogle Scholar
Laine, I. and Tohge, K., The Bank-Laine conjecture–a survey. Some topics on value distribution and differentiability in complex and p-adic analysis, 398–417, Math. Monogr. Ser., Vol. 11 (Sci. Press Beijing, Beijing, 2008).Google Scholar
Langley, J. K.. On complex oscillation and a problem of Ozawa. Kodai Math. J. 9 (1986), 430439.CrossRefGoogle Scholar
Lommel, E.. Zur Theorie der Bessel'schen Functionen. Math. Ann. 3 (1871), 475487.CrossRefGoogle Scholar
Pearson, K.. On the solution of some differential equations by Bessel's functions. Messenger of Math. IX (1880), 127131.Google Scholar
Rossi, J.. Second order differential equations with transcendental coefficients. Proc. Amer. Math. Soc. 97 (1986), 6166.CrossRefGoogle Scholar
Shen, L. C.. Solution to a problem of S. Bank regarding exponent of convergence of zeros of the solutions of differential equation $f''+Af=0$. Kexue Tongbao (English Ed.). 30 (1985), 15791585.Google Scholar
Steinmetz, N.. Zur Wertverteilung von Exponentialpolynomen. Manuscripta Math. 26 (1978/79), 155167.CrossRefGoogle Scholar
Watson, G. N.. A Treatise on the Theory of Bessel Functions (Cambridge, England, New York: Cambridge University Press, The Macmillan Company, 1944).Google Scholar
Wittich, H.. Subnormale Lösungen der Differentialgleichung: $w''+p(ez)w'+q(ez)w=0$. Nagoya Math. J. 30 (1967), 2937.Google Scholar
Zhang, Y. Y.. On entire function $e^p(z)\int _0^z\beta (t)e^-p(t)\,{\rm d}t$ with applications to Tumura–Clunie equations and complex dynamics. Comput. Methods Funct. Theory 0 (2022), 00.Google Scholar
Zhang, Y. Y., Gao, Z. S. and Zhang, J. L.. Entire solutions of certain nonlinear differential and delay-differential equations. J. Math. Anal. Appl. 503 (2021), 125349.CrossRefGoogle Scholar