Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-28T12:26:21.539Z Has data issue: false hasContentIssue false

Positive solutions of elliptic equations involving supercritical growth

Published online by Cambridge University Press:  14 November 2011

F. Merle
Affiliation:
Laboratoire d'Analyse Numérique, Tour 55-65, 5e etage, Université Pierre et Marie curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
L. A. Peletier
Affiliation:
Mathematical Institute, Leiden University, PB9512, 2300 RA Leiden, The Netherlands

Synopsis

Positive radial solutions of elliptic equation involving supercritical growth are analysed as their supremum norm tends to infinity. It is shown that they converge, uniformly away from the origin, as well as in H1, to the unique singular solution.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atkinson, F. V. and Peletier, L. A.. Emden–Fowler equations involving critical exponents. Nonlinear Anal. 8 (1986), 755776.CrossRefGoogle Scholar
2Atkinson, F. V. and Peletier, L. A.. Oscillations of perturbed autonomous equations with an application to nonlinear elliptic eigenvalue problems involving critical Sobolev exponents. Differential and Integral Equations 3 (1990), 401433.CrossRefGoogle Scholar
3Brezis, H. and Nirenberg, L.. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437477.Google Scholar
4Brezis, H. and Peletier, L. A.. Asymptotics for elliptic equations involving critical exponents. In Partial Differential Equations and the Calculus of Variations, eds Colombini, F., Marino, A., Modica, L. and Spagnolo, S. (Basel: Birkhauser, 1989).Google Scholar
5Budd, C.. Applications of Shilnikov's theory to semilinear elliptic equations. SIAM J. Math. Anal. 20 (1989), 10691080.Google Scholar
6Budd, C. & Norbury, J.. Semilinear elliptic equations and supercritical growth. J. Differential Equations 68 (1987), 169197.Google Scholar
7Gidas, B., Ni, W.-M. & Nirenberg, L.. Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209243.Google Scholar
8Joseph, D. D. and Lundgren, T. S.. Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal. 49 (1973), 241269.CrossRefGoogle Scholar
9Lin, C.-S. and Ni, W.-M.. A counterexample to the nodal domain conjecture and a related semilinear equation. Proc. Amer. Math. Soc. 102 (1988), 271277.CrossRefGoogle Scholar
10Mignot, F. and Puel, J.-P.. Solution radiale singuliere de –Δu = λe u. C. R. Acad. Sci. Paris 307 (1988), 379382.Google Scholar
11Ni, W.-M. and Serrin, J.. Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case. Atti del Convegni Lincei 77, Roma, 6-9 maggio 1985 (Roma: Accademia Nazionale dei Lincei, 1986).Google Scholar
12Pohozaev, S. I.. Eigenfunctions of the equation Δu + λf(u) = 0. Dokl. Akad. Nauk. SSSR 165 (1965), 3639 (in Russian); translated in Sov. Math. 6 (1965), 1408–1411.Google Scholar
13Rabinowitz, P. H.. Variational methods for nonlinear eigenvalue problems. Indiana Univ. Math. J. 23 (1974), 729754.CrossRefGoogle Scholar