Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-16T11:41:31.624Z Has data issue: false hasContentIssue false

Remarks on countable subadditivity

Published online by Cambridge University Press:  23 August 2023

Loukas Grafakos
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA (grafakosl@umsystem.edu)
Monica Vişan
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095, USA (visan@math.ucla.edu)

Abstract

We discuss how countable subadditivity of operators can be derived from subadditivity under mild forms of continuity, and provide examples manifesting such circumstances.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, T.. Locally bounded spaces. Proc. Imp. Acad. Tokyo 18 (1942), 585634.Google Scholar
Calderón, A.-P.. Intermediate spaces and interpolation. (Studia Math. Ser. Specjalna) Zeszyt 1 (1963), 3134.Google Scholar
Calderón, A.-P.. Intermediate spaces and interpolation, the complex method. Studia Math. 24 (1964), 113190.CrossRefGoogle Scholar
Carro, M. J. and Martín, J.. Extrapolation theory for the real interpolation method. Collect. Math. 53 (2002), 165186.Google Scholar
Grafakos, L., Classical Fourier Analysis, 3rd Ed. Graduate Texts in Math. Vol. 249 (Springer, NY, 2014).CrossRefGoogle Scholar
Grafakos, L. and Kalton, N. J.. The Marcinkiewicz multiplier condition for bilinear operators. Studia Math. 146 (2001), 115156.CrossRefGoogle Scholar
Hunt, R. A.. An extension of the Marcinkiewicz interpolation theorem to Lorentz spaces. Bull. Amer. Math. Soc. 70 (1964), 803807.CrossRefGoogle Scholar
Hunt, R. A.. On L(p,q) spaces. Enseignement Math 12 (1966), 249276.Google Scholar
Kalton, N. J., Peck, N. T. and Roberts, J. W., An $F$-space Sampler, London Mathematical Society Lecture Notes Series, Vol. 89 (Cambridge University Press, Cambridge, 1984).CrossRefGoogle Scholar
Krein, S. G. and Semenov, E. M.. A scale of spaces. Dokl. Akad. Nauk SSSR 138 (1961), 763766.Google Scholar
Lions, J.-L. and Peetre, J.. Sur une classe d'espaces d’ interpolation. Inst. Hautes Études Sci., Publ. Math. No. 19 (1964), 568.CrossRefGoogle Scholar
Peetre, J.. Nouvelles propriétés d'espaces d’ interpolation. C. R. Acad. Sci. Paris 256 (1963), 14241426.Google Scholar
Rolewicz, S., Metric Linear Spaces, 2nd Ed., Mathematics and its Applications (East European Series), Vol. 20. D. Reidel Publishing Co., Dordrecht; PWN–Polish Scientific Publishers, Warsaw, 1985).Google Scholar
Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, Vol. 43, Monographs in Harmonic Analysis, III. (Princeton University Press, Princeton, NJ, 1993).CrossRefGoogle Scholar
Stein, E. M. and Weiss, G.. Interpolation of operators with change of measures. Trans. Am. Math. Soc. 87 (1958), 159172.CrossRefGoogle Scholar
Stein, E. M. and Weiss, G.. An extension of a theorem of Marcinkiewicz and some of its applications. J. Math. Mech. 8 (1959), 263284.Google Scholar
Stein, E. M. and Weiss, G., Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, Vol. 32 (Princeton University Press, Princeton, N.J., 1971).Google Scholar
Yano, S.. Notes on Fourier analysis, XXIX, An extrapolation theorem. J. Math. Soc. Jpn 3 (1951), 296305.CrossRefGoogle Scholar