Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-07T14:24:04.270Z Has data issue: false hasContentIssue false

Semilinear elliptic equations involving power nonlinearities and Hardy potentials with boundary singularities

Published online by Cambridge University Press:  21 December 2023

Konstantinos T. Gkikas
Affiliation:
Department of Mathematics, University of the Aegean, 832 00 Karlovassi, Samos, Greece Department of Mathematics, National and Kapodistrian University of Athens, 15784 Athens, Greece (kgkikas@aegean.gr)
Phuoc-Tai Nguyen
Affiliation:
Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic (ptnguyen@math.muni.cz)

Abstract

Let $\Omega \subset \mathbb {R}^N$ ($N\geq 3$) be a $C^2$ bounded domain and $\Sigma \subset \partial \Omega$ be a $C^2$ compact submanifold without boundary, of dimension $k$, $0\leq k \leq N-1$. We assume that $\Sigma = \{0\}$ if $k = 0$ and $\Sigma =\partial \Omega$ if $k=N-1$. Let $d_{\Sigma }(x)=\mathrm {dist}\,(x,\Sigma )$ and $L_\mu = \Delta + \mu \,d_{\Sigma }^{-2}$, where $\mu \in {\mathbb {R}}$. We study boundary value problems ($P_\pm$) $-{L_\mu} u \pm |u|^{p-1}u = 0$ in $\Omega$ and $\mathrm {tr}_{\mu,\Sigma}(u)=\nu$ on $\partial \Omega$, where $p>1$, $\nu$ is a given measure on $\partial \Omega$ and $\mathrm {tr}_{\mu,\Sigma}(u)$ denotes the boundary trace of $u$ associated to $L_\mu$. Different critical exponents for the existence of a solution to ($P_\pm$) appear according to concentration of $\nu$. The solvability for problem ($P_+$) was proved in [3, 29] in subcritical ranges for $p$, namely for $p$ smaller than one of the critical exponents. In this paper, assuming the positivity of the first eigenvalue of $-L_\mu$, we provide conditions on $\nu$ expressed in terms of capacities for the existence of a (unique) solution to ($P_+$) in supercritical ranges for $p$, i.e. for $p$ equal or bigger than one of the critical exponents. We also establish various equivalent criteria for the existence of a solution to ($P_-$) under a smallness assumption on $\nu$.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. R. and Hedberg, L. I.. Function spaces and potential theory (New York: Springer, 1996).CrossRefGoogle Scholar
Ancona, A.. Negatively curved manifolds, elliptic operators and the Martin boundary. Ann. Math. 125 (1987), 495536.CrossRefGoogle Scholar
Barbatis, G., Gkikas, K. T. and Tertikas, A.. Heat and Martin kernel estimates for Schrödinger operators with critical Hardy potentials. Math. Ann. (2023). doi:10.1007/s00208-023-02693-9.CrossRefGoogle Scholar
Bhakta, M., Marcus, M. and Nguyen, P.-T.. Boundary value problems for semilinear Schrödinger equations with singular potentials and measure data. Math. Ann. (2023). doi:10.1007/s00208-023-02764-x.CrossRefGoogle Scholar
Bidaut-Véron, M.-F., Hoang, G., Nguyen, Q.-H. and Véron, L.. An elliptic semilinear equation with source term and boundary measure data: the supercritical case. J. Funct. Anal. 269 (2015), 19952017.CrossRefGoogle Scholar
Bidaut-Véron, M. F. and Vivier, L.. An elliptic semilinear equation with source term involving boundary measures: the subcritical case. Rev. Mat. Iberoam. 16 (2000), 477513.CrossRefGoogle Scholar
Brezis, H. and Marcus, M.. Hardy's inequalities revisited. Ann. Sc. Norm. Super. Pisa Cl. Sci. 25 (1997), 217237.Google Scholar
Chen, H. and Véron, L.. Boundary singularities of semilinear elliptic equations with Leray-Hardy potential. Commun. Contemp. Math. 24 (2022), 2150051.CrossRefGoogle Scholar
Chen, H. and Zhou, F.. Isolated singularities for elliptic equations with Hardy operator and source nonlinearity. Discrete Contin. Dyn. Syst. 38 (2018), 29452964.CrossRefGoogle Scholar
Dal Maso, G.. On the integral representation of certain local functionals. Ric. Mat. 32 (1983), 85113.Google Scholar
Dávila, J. and Dupaigne, L.. Comparison results for PDEs with a singular potential. Proc. R. Soc. Edinburgh Sect. A 133 (2003), 6183.CrossRefGoogle Scholar
Dávila, J. and Dupaigne, L.. Hardy-type inequalities. J. Eur. Math. Soc. 6 (2004), 335365.CrossRefGoogle Scholar
Dupaigne, L. and Nedev, G.. Semilinear elliptic PDE's with a singular potential. Adv. Differ. Equ. 7 (2002), 9731002.Google Scholar
Fall, M. and Mahmoudi, F.. Weighted Hardy inequality with higher dimensional singularity on the boundary. Calc. Var. Partial Differ. Equ. 50 (2014), 779798.CrossRefGoogle Scholar
Fall, M. M.. Nonexistence of distributional super solutions of a semilinear elliptic equation with Hardy potential. J. Funct. Anal. 264 (2013), 661690.CrossRefGoogle Scholar
Feyel, D. and de la Pradelle, A.. Topologies fines et compactifications associées certains espaces de Dirichlet. Ann. Inst. Fourier (Grenoble) 27 (1977), 121146.CrossRefGoogle Scholar
Filippas, S., Moschini, L. and Tertikas, A.. Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains. Commun. Math. Phys. 273 (2007), 237281.CrossRefGoogle Scholar
Gkikas, K. T. and Nguyen, P.-T.. On the existence of weak solutions of semilinear elliptic equations and systems with Hardy potentials. J. Differ. Equ. 266 (2019), 833875.CrossRefGoogle Scholar
Gkikas, K. and Nguyen, P.-T.. Semilinear elliptic Schrödinger equations with singular potentials and absorption terms. To appear in J. London Math. Soc., arXiv:2203.01266.Google Scholar
Gkikas, K. and Nguyen, P.-T.. Semilinear elliptic Schrödinger equations involving singular potentials and source terms. Nonlinear Anal. 238 (2024), 113403.CrossRefGoogle Scholar
Gkikas, K. T. and Véron, L.. Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials. Nonlinear Anal. 121 (2015), 469540.CrossRefGoogle Scholar
Gmira, A. and Véron, L.. Boundary singularities of solutions of some nonlinear elliptic equations. Duke Math. J. 64 (1991), 271324.CrossRefGoogle Scholar
Kalton, N. J. and Verbitsky, I. E.. Nonlinear equations and weighted norm inequality. Trans. Am. Math. Soc. 351 (1999), 34413497.CrossRefGoogle Scholar
Marcus, M.. Estimates of Green and Martin kernels for Schrödinger operators with singular potential in Lipschitz domains. Ann. Inst. Henri. Poincaré Anal. Non Linéaire 36 (2019), 11831200.CrossRefGoogle Scholar
Marcus, M.. Boundary value problems with signed measure data for semilinear Schrödinger equations, https://arxiv.org/abs/2305.10370.Google Scholar
Marcus, M., Mizel, V. J. and Pinchover, Y.. On the best constant for Hardy's inequality in $\mathbb {R}^n$. Trans. Am. Math. Soc. 350 (1998), 32373255.CrossRefGoogle Scholar
Marcus, M. and Moroz, V.. Moderate solutions of semilinear elliptic equations with Hardy potential under minimal restrictions on the potential. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018), 3964.Google Scholar
Marcus, M. and Nguyen, P.-T.. Moderate solutions of semilinear elliptic equations with Hardy potential. Ann. Inst. Henri. Poincaré Anal. Non Linéaire 34 (2017), 6988.CrossRefGoogle Scholar
Marcus, M. and Nguyen, P.-T.. Schrödinger equations with singular potentials: linear and nonlinear boundary value problems. Math. Ann. 374 (2019), 361394.CrossRefGoogle Scholar
Marcus, M. and Véron, L.. Nonlinear second order elliptic equations involving measures. De Gruyter Ser. Nonlinear Anal. Appl., Vol. 21 (Berlin: De Gruyter, 2014), xiv+248 pp.Google Scholar
Marcus, M. and Véron, L.. Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. 15 (2016), 501542.Google Scholar
Marcus, M. and Véron, L.. Removable singularities and boundary trace. J. Math. Pures Appl. 80 (2001), 879900.CrossRefGoogle Scholar
Nguyen, P.-T.. Semilinear elliptic equations with Hardy potential and subcritical source term. Calc. Var. Partial Differ. Equ. 56 (2017), 44.CrossRefGoogle Scholar
Véron, L.. Singularities of solutions of second order quasilinear equations. Pitman Res. Notes Math. Ser., Vol. 353 (Harlow: Longman, 1996), viii+377 pp.Google Scholar
Stein, E. M.. Singular integrals and differentiability properties of functions. Princeton Math. Ser., No. 30 (Princeton, NJ: Princeton University Press, 1970), xiv+290 pp.Google Scholar