Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-12T21:58:05.002Z Has data issue: false hasContentIssue false

Shooting methods and topological transversality

Published online by Cambridge University Press:  14 November 2011

B. Buffoni
Affiliation:
Département de mathématiques, Ecole Polytechnique Fédérate de Lausanne, 1015 Lausanne, Switzerland (Boris.Buffoni@epfl.ch)

Extract

We show that shooting methods for homoclinic or heteroclinic orbits in dynamical systems may automatically guarantee the topological transversality of the stable and unstable manifolds. The interest of such results is twofold. First, these orbits persist under perturbations which destroy the structure allowing the shooting method and, second, topological transversality is often sufficient when some kind of transversality is required to obtain chaotic dynamics. We shall focus on heteroclinic solutions in the extended Fisher–Kolmogorov equation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bessi, U.. Homoclinic and period-doubling bifurcations for damped systems. Ann. Inst. Henri Poincaré, Analyse nonlin. 12 (1995), 1é25.Google Scholar
2Bolotin, S.. Variational criteria for nonintegrability and chaos in Hamiltonian systems. In Hamiltonian mechanics (Toruń, 1993), pp. 173179. NATO Adv. Sci. Inst. Ser. B Phys., 331 (New York: Plenum, 1994).CrossRefGoogle Scholar
3Buffoni, B.. Infinitely many large amplitude homoclinic orbits for a class of autonomous Hamiltonian systems. J. Diff. Eqns 121 (1995), 109120.CrossRefGoogle Scholar
4Buffoni, B. and Séré, É.. A global condition for quasi-random behaviour in a class of conservative systems. Commun. Pure Appl. Math. 49 (1996), 285305.3.0.CO;2-9>CrossRefGoogle Scholar
5Buffoni, B. and Toland, J. F.. Global bifurcation of homoclinic and periodic orbits for autonomous Hamiltonian systems. J. Diff. Eqns 118 (1995), 104120.CrossRefGoogle Scholar
6Buffoni, B., Champneys, A. R. and Toland, J. F.. Bifurcation and coalescence of a plethora of multi-modal homoclinic orbits for a Hamiltonian system. J, Dyn. Diff. Eqns 8 (1996), 221281.CrossRefGoogle Scholar
7Buffoni, B., Groves, M. and Toland, J. F.. A plethora of capillary-gravity waves with nearcritical Bond and Froude numbers. Phil. Trans. R. Soc. Land. A 354 (1996), 575607.Google Scholar
8Champneys, A. R. and Spence, A.. Hunting for homoclinic orbits in reversible systems: a shooting technique. Adv. Comp. Math. 1, 81108.CrossRefGoogle Scholar
9Champneys, A. R..and Toland, J. F.. Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems. Nonlinearity 6 (1993), 665721.CrossRefGoogle Scholar
10Churchill, R. C. and Rod, D. L.. Pathology in dynamical systems. I. J. Diff. Eqns 21 (1976), 3965CrossRefGoogle Scholar
11Churchill, R. C. and Rod, D. L.. Pathology in dynamical systems. II. J. Diff. Eqns 21 (1976), 66112.CrossRefGoogle Scholar
12Churchill, R. C. and Rod, D. L.. Pathology in dynamical systems. III. J. Diff. Eqns 37 (1979), 2339.CrossRefGoogle Scholar
13Zelati, V. Coti and Rabinowitz, P. H.. Homoclinic type solutions for a semilinear elliptic PDE on Rn. Commun. Pure Appl. Math. 45 (1992), 12171269.Google Scholar
14Devaney, R. L.. Homoclinic orbits in Hamiltonian systems. J. Diff. Eqns 21 (1976), 431438.CrossRefGoogle Scholar
15Easton, R. W.. Isolating blocks and symbolic dynamics. Journal of Diff. Eqns 17 (1975), 96118.CrossRefGoogle Scholar
16Fonseca, I. and Gangbo, W.. Degree theory in analysis and applications (Oxford University Press, 1995).CrossRefGoogle Scholar
17Guckenheimer, J. and Holmes, P.. Nonlinear oscillations. Dynamical Systems and Bifurcations of Vector Fields (Springer, 1983).CrossRefGoogle Scholar
18Guillemin, V. and Pollack, A.. Differential topology (Englewood Cliffs, NJ: Prentice-Hall, 1974).Google Scholar
19Hastings, S. P.. Use of simple shooting to obtain chaos. Physica D 62 (1993), 8793.CrossRefGoogle Scholar
20Hirsch, M. W.. Differential topology (Springer, 1976).CrossRefGoogle Scholar
21Hofer, H. and Toland, J. F.. Homoclinic, heteroclinic and periodic orbits for a class of indefinite Hamiltonian systems. Math. Annalen 268 (1984), 387403.CrossRefGoogle Scholar
22Kalies, W. D. and A, R. C.. Vorst, M. van der. Multitransition homoclinic and heteroclinic solutions of the extended Fisher–Kolmogorov equation. J. Diff. Eqns 131 (1996), 209228.CrossRefGoogle Scholar
23Kalies, W. D., Kwapisz, J. and Vorst, R. C. A. M. van der. Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria. Commun. Math. Phys. 193 (1998), 337371.CrossRefGoogle Scholar
24Mischaikov, K. and Mrozek, M.. Chaos in the Lorenz equations: a computer-assisted proof. Bull. AMS 32 (1995), 6672.CrossRefGoogle Scholar
25Mischaikov, K. and Mrozek, M.. Isolating Neighbourhoods and chaos. Japan J. Ind. Appl. Math. 12 (1995), 205236.CrossRefGoogle Scholar
26Mischaikov, K. and Mrozek, M.. Chaos in the Lorenz equations: a computer-assisted proof (part II: details). Math. Comput. 67 (1998), 10231046.CrossRefGoogle Scholar
27Palmer, K. J.. Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dyn. Rep. 1 (1988), 265306.Google Scholar
28Palis, J. and Melo, W. de. Geometric theory of dynamical systems (Springer, 1982).CrossRefGoogle Scholar
29Peletier, L. A. and Troy, W. C.. Spatial patterns described by the extended Fisher–Kolmogorov equation: kinks. Differential Int. Equations 8 (1995), 12791304.Google Scholar
30Peletier, L. A. and Troy, W. C.. A topological shooting method and the existence of kinks of the extended Fisher–Kolmogorov. Topolog. Methods Nonlinear Analysis 6 (1995), 331355.CrossRefGoogle Scholar
31Peletier, L. A. and Troy, W. C.. Chaotic spatial patterns described by the extended Fisher–Kolmogorov equation. J. Diff. Eqns 129 (1996), 458508.CrossRefGoogle Scholar
32Séré, É.. Looking for the Bernoulli shift. Ann. Inst. Henri Poincaré, Analyse nonlin. 10 (1993), 561590.CrossRefGoogle Scholar
33Toland, J. F.. Hamiltonian systems with monotone trajectories. Proc. Centre Math. Analysis Aust. Nat. Univ. 8 (1984), 5163.Google Scholar
34Toland, J. F.. An index for Hamiltonian systems with a natural order structure. In Nonlinear functional analysis and its applications (Maratea, 1985), pp. 147160. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, 173 (Dordrecht and Boston, MA: Reidel, 1986).CrossRefGoogle Scholar
35Berg, J. B. van den. Uniqueness of solutions for the extended Fisher–Kolmogorov equation. C. R. Acad. Sci. Paris, Ser. I Math. 326 (1998), 447452.CrossRefGoogle Scholar
36Wiggins, S.. Global bifurcations and chaos (Springer, 1988).CrossRefGoogle Scholar