Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-18T05:10:17.019Z Has data issue: false hasContentIssue false

Théorèmes d'existence en calcul des variations et applications à l'élasticité non linéaire

Published online by Cambridge University Press:  14 November 2011

R. Tahraoui
Affiliation:
Université de Paris Sud, Bât. Mathématiques, F. 91440 Orsay, France Université de Picardie, U.F.R. de Math, et d'Informatique, 33, rue Saint Leu, F. 80093 Amiens Cedex, France

Synopsis

In this paper, we study problems of the form:

We obtain some existence and regularity results when Ω is either a ball or an annulus, without convexity hypothesis on g. We then apply these results to some shear problems in nonlinear elasticity.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

1Aubert, G. et Tahraoui, R.. Théorèmes d'existence pour des problèmes du calcul des variations du type: Inf f(x, u')dx et Inf f(x, u, u')dx J. Differential Equations 33 (1979), 115.CrossRefGoogle Scholar
2Aubert, G. et Tahraoui, R.. Théorèms d'existence en calcul des variations. C. R. Acad. Sci. Paris Sér. I Math. 285 (1977), 355356.Google Scholar
3Aubert, G. et Tahraoui, R.. Sur la minimisation d'une fonctionnelle non convexe, non ditérentiable en dimension un. Boll. Un. Mat. Ital. 5 17–B (1980), 244258.Google Scholar
4Aubert, G. et Tahraoui, R.. Théorèmes d'existence en optimisation non convexe. Appl. Anal. 18 (1984), 75100.CrossRefGoogle Scholar
5Ball, J. M.. Convexity conditions and existence theorems in non linear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337403.CrossRefGoogle Scholar
6Ekeland, I. and Temam, R.. Analyse convexe et problèmes variationnels (Paris: Dunod Gauthiers-Villars, 1974).Google Scholar
7Gurtin, M. E. and Temam, R.. On the antiplane shear in finite elasticity. J. Elasticity 11 (1981), 197206.CrossRefGoogle Scholar
8Marcellini, P.. A relation between existence of minima for non convex integrals and uniqueness for non strictly convex integrals of the calculus of variations. Proceedings of Congress on Mathematical Theories of Optimization. Lecture Notes in Mathematics 979 216231 (Berlin: Springer, 1983).Google Scholar
9Mascolo, E. and Schianchi, R.. Existence theorems for non convex problems. J. Math. Pures Appl. 62 (1983), 349359.Google Scholar
10Olech, C.. Integrals of set valued functions and linear optimal control problems. Colloque sur la théorie mathématique du contrôle optimal, C.B.R.M. Vander Louvain, 1970, 109125.Google Scholar
11Raymond, J. P., Conditions d'existence et approximation de solutions du problème: inf Thèse de 3e cycle, Université de Toulouse, 1982.Google Scholar
12Stampacchia, G.. Equations elliptiques du second ordre à coefficients discontinus (Montreal: Les Presses de l'Université de Montréal, 1965).Google Scholar
13Tartar, L.. Topics in non linear analysis Cours Université Wisconsin, 1975.Google Scholar
14Tahraoui, R.. Théorèmes d'existence en calcul des variations et applications à l'élasticité non lineaire. C. R. Acad. Sci. Paris Sér I Math. 302 (1986), 495498.Google Scholar
15Fosdick, R. L. and Sithigh, G. Mac. Helical shear of an elastic, circular tube with a non-convex stored energy. Arch. Rational Mech. Anal. 84 (1983), 3153.CrossRefGoogle Scholar
16Gurtin, M. E.. Topics infinite elasticity. Conférence régionale, Series in Applied Mathematics 35.Google Scholar
17Sithigh, G. Mac. Coexistent phases and minimisers in constrained elastic materials (Ph.D. Thesis, University of Minnesota, 1982).Google Scholar
18Tahraoui, R.. Congrès National d'Analyse Numérique (21–25 Mai 1984), Bombannes, France, Résumé des communications, 203207.Google Scholar
19Murat, F. et Tartar, L.. Calcul des variations et homogénéisation (Publication duLaboratoire d'Analyse Numérique, nº 84012, Université Paris VI).Google Scholar
20Ekeland, I.. Discontinuité de champs hamiltoniens et existence de solutions optimales en calcul des variations. Inst. Hautes Etudes Sci. Publ. Math. 47 (1977) 532.CrossRefGoogle Scholar
21Tartar, L.. Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Edinburgh IV (1978), 136212.Google Scholar
22Aubert, G. et Tahraoui, R.. Sur la faible fermeture de l'ensemble des contraintes en élasticité non linéaire plane. Arch. Rational Mech. Anal. 97 (1987), 3358.CrossRefGoogle Scholar
23Gurtin, M. E., An introduction to continuum mechanics Math, in Science and Engineering 158 (New York: Academic Press).Google Scholar
24Marsden, J. E. and Hughes, T. J. R.. Mathematical Foundations of Elasticity (Englewood Cliffs, New Jersey: Prentice-Hall, 1983).Google Scholar
25Aubert, G. et Tahraoui, R.. Conditions nécessaires de faible fermeture et de 1-rang convexité en dimension 3. Publ. Math. Univ. Paris 11 83 T 15.Google Scholar
26Lions, P. L., Solutions généralisées des équations de Hamilton Jacobi du premier ordre. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 953956.Google Scholar
27Ciarlet, P. G.. Mathematical Elasticity (Publication du Laboratoire d'Analyse Numérique, Université Paris VI, Part I, nº A 86 007).Google Scholar
28Tahraoui, R.. (en préparation).Google Scholar
29Marcellini, P.. Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessita. Rend. Mat. 13 (1980), 271281.Google Scholar
30Mascolo, E. and Schianchi, R.. Nonconvex problems of the calculus of variations. Nonlinear Anal. 9 (1985), 371379.CrossRefGoogle Scholar
31Ericksen, J. L.. Equilibrium of bars. J. Elasticity 5 (1975), 191201.CrossRefGoogle Scholar
32Fosdick, R. L. and James, R. D.. The elastica and the problem of the pure bending for nonconvex stored energy function. J. Elasticity 11 (1981), 165186.CrossRefGoogle Scholar
33Knowles, J. L.. On finite anti-plane shear for incompressible elastic materials. J. Austral. Math. Soc. Sér. B 19 (1976), 400415.CrossRefGoogle Scholar
34Antman, S. S.. Regular and singular problems for large elastic deformations of tubes, wedges, and cylinders. Arch. Rational Mech. Anal. 83 (1983), 152.CrossRefGoogle Scholar
35Francfort, G. A. and Murat, F.. Homogenization and optimal bounds in linear elasticity (Publications du Laboratoire d'Analyse Numérique, nº 85009, Université Paris VI).CrossRefGoogle Scholar
36Mignot, F. and Puel, J. P.. Buckling of viscoelastic Rod. Arch. Rational Mech. Anal. 85 (1984), 251277.CrossRefGoogle Scholar
37Rivlin, R. S.. Large elastic deformations of isotropic materials VI. Further results inthe theory of torsion, shear and flexure. Philos. Trans. Roy. Soc. London Ser. A 242 (19491950), 173195.Google Scholar
38Ciarlet, P. G. and Necas, J.. Unilateral problems in nonlinear, three dimensional elasticity (Publications Laboratoire d'Analyse Numérique, nº 84003, Université Paris VI).CrossRefGoogle Scholar
39Aubert, G. et Tahraoui, R.. Sur quelques résultats d'existence en optimisation non convexe. C. R. Acad. Sci. Paris, Sér. I Math. 297 (1983), 287290.Google Scholar
40Tahraoui, R.. Contribution à I'étude de quelques questions d'analyse non linéaire issues de la mécanique Thèse d'Etat, Université Paris VI, 1986.Google Scholar
41Dacorogna, B.. Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Fund. Anal. 46 (1982), 102118.CrossRefGoogle Scholar