Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T16:08:31.708Z Has data issue: false hasContentIssue false

The avian skin in relation to surface ecology

Published online by Cambridge University Press:  05 December 2011

R. I. C. Spearman
Affiliation:
Department of Dermatology, University College London, School of Medicine, London WC1E 6JJ
Get access

Synopsis

Birds have a layer of plumage over most of the body which provides thermal insulation. The vane-shaped feathers are more efficient than fur in decreasing air movement between the skin microclimate and the ambient environment. Around the feathers is a layer of air, the depth of which for optimum insulation is determined by their angles to the skin surface maintained by the follicular musculature. The mean avian core temperature is 41°C which is higher than in mammals, but skin surface temperature is several degrees lower. Over the exposed skin the microclimate is more variable, but the skin is warmed by the dermal blood vessels and so the feet do not freeze even at sub-zero temperatures. Transpiration occurs through the skin and helps cool the body. Some water vapour is absorbed by the feather keratin, which prevents the feathers from becoming brittle in dry ambient air. Maintenance of the feather vane arrangement requires a more rigid keratin than in hairs. Birds have only one skin gland, the secretion of which contains wax and lipids, but the epidermis is also strongly lipogenic. The sebaceous secretion probably waterproofs the skin, prevents the feathers from becoming too dry, and is anti-microbial. The avian skin surface provides habitats for many commensal micro-organisms and a few bacterial, fungal and arthropod parasites. Pathogenic microorganisms can penetrate the epidermal barrier in wounds or indirectly through the bites of animal parasites. Once in the dermis micro-organisms are combated by immune responses.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astbury, W. T., and Marwick, T. C., 1932. X-ray interpretation of the molecular structure of feather keratin. Nature, Lond., 130, 309.CrossRefGoogle Scholar
Atwell, J. L. and Marchalonis, J. J., 1976. Immunoglobulin classes of lower vertebrates distinct from IgM immunoglobulin. In Comparative Immunology. Ed. Marchalonis, J. J., pp. 276297. Oxford: Blackwell.Google Scholar
Auber, L., 1955. Cortex and medullar of bird feathers. Nature, Lond., 176, 12181219.CrossRefGoogle Scholar
Avens, J. S. and Miller, B. F., 1970. Quantifying bacteria on poultry carcase skin. Poult. Sci., 49, 13091315.CrossRefGoogle Scholar
Barnes, F. M. and Mead, G. C., 1977. Factors affecting the microbiological quality of processed poultry. In Growth and Poultry Meat Production. Eds Bookman, K. N. and Wilson, B. J., pp. 279299. Edinburgh: British Poultry Science.Google Scholar
Baumel, J. J., 1980. Nomina Anatomica Avium. An Annotated Anatomical Dictionary of Birds, pp. 637. London: Academic Press.Google Scholar
Benedict, A. A. and Yamaga, K., 1976. Immunoglobulins and antibody production in avian species. In Comparative Immunology. Ed. Marchalonis, J. J., pp. 335375. Oxford: Blackwell.Google Scholar
Bernstein, M. H., 1971. Cutaneous and respiratory evaporation in the painted quail Exalfactoria Chinensis during ontogeny of thermoregulation. Comp. Biochem. Physiol., 38A, 611617.CrossRefGoogle Scholar
Brush, A. H., 1978. Feather keratins. In Chemical Zoology, Vol. 10. Ed. Brush, A. H., pp. 117140. New York: Academic Press.Google Scholar
Brush, A. H., 1980. Chemical heterogeneity in proteins of Avian keratin structures. In The Skin of Vertebrates Eds Spearman, R. I. C. and Riley, P. A., pp. 87109. Symp. Linn. Soc. Lond., 9.Google Scholar
Cane, A. K. and Spearman, R. I. C., 1967. A histochemical study of keratinization in the domestic fowl (Gallus gallus). J. Zool., Lond., 153, 337352.CrossRefGoogle Scholar
Carr, J. G., 1957. Internal structure of avian melanin granules: an electron microscope study. Quart. J. Micros. Sci., 98, 159162.Google Scholar
Chaffe, R. R. J. and Roberts, J. C., 1971. Temperature acclimatization in birds and mammals. A. Rev. Physiol., 33, 155202.CrossRefGoogle Scholar
Chandler, A. C., 1949. Introduction to Parasitology, 8th Edn, pp. 756. New York: Wiley.Google Scholar
Cunningham, C. C., 1978. Avian pox. In Disease of Poultry, 7th Edn. Eds Hofstad, M. S. Calner, B. W. Helmboldt, C. F. Reid, W. M. and Yoder, A. W., pp. 597609. Iowa: State University Press.Google Scholar
Dathe, H. 1955. Über die Schreckmauser. Jour. Ornith., 96, 514.CrossRefGoogle Scholar
Dawson, W. R. and Hudson, J. W., 1970. Birds. In Comparative Physiology of Thermoregulation. Ed. Whittow, G. C., pp. 223310. New York: Academic Press.Google Scholar
Dogiel, V. A., Polyanski, Y. L. and Khesin, E. M., 1964. General Parasitology, pp. 387. Edinburgh: Oliver and Boyd.Google Scholar
Dorris, F., 1940. Behaviour of pigment cells from cultures of neural crest when grafted back into the embryo. Proc. Soc. Exp. Biol. Med., 44, 286287.CrossRefGoogle Scholar
Fox, H. M. and Vevers, G., 1960. The Nature of Animal Colours. London: Sidgwick and Jackson.Google Scholar
Fraser, R. D. B. and McRae, T. P., 1980. Current views on the keratin complex. In The Skin of Vertebrates. Eds Spearman, R. I. C. and Riley, P. A., pp. 6786. Symp. Linn. Soc. Lond., 9.Google Scholar
Fraser, R. D. B., McRae, T. P. and Rogers, G. E. 1972. Keratins: their Composition, Structure and Biosynthesis, pp. 304. Illinois: Thomas.Google Scholar
Freeman, B. M., 1971. Body temperature and thermoregulation. In Physiology and Biochemistry of the Domestic Fowl, Vol. 2. Eds Bell, D. J. and Freeman, B. M., pp. 11151145. London: Academic Press.Google Scholar
Freinkel, R. K., 1972. Lipogenesis in epidermal differentiation of embryonic chick. J. Invest. Derm., 359, 332.CrossRefGoogle Scholar
Haahti, E., Lagerspetz, K., Nikkari, T. and Fales, H. M., 1964. Lipids of the uropygial glands of birds. Comp. Biochem. Physiol., 12, 435437.CrossRefGoogle ScholarPubMed
Harry, E. G., 1967. Some characteristics of Staphylococcus aureus isolated from the skin and upper respiratory tract of domesticated and wild (feral) birds. Res. Vet. Sci., 8, 490499.CrossRefGoogle ScholarPubMed
Horvath, S. M., Folk, G. E., Craig, F. M. and Fleischmann, W., 1948. Survival time of various warmblooded animals in extreme cold. Science, N.Y., 107, 171172.CrossRefGoogle ScholarPubMed
Huff, C. G., Coulston, F., Laird, R. L. and Porter, R. J., 1947. Pre-erythrocytic development of Plasmodium lophurae in various hosts. J. Infect. Dis., 81, 713.CrossRefGoogle Scholar
Jacob, J., 1978. Uropygial gland secretions and feather waxes. In Chemical Zoology, Vol. 10. Ed. Brush, A. H., pp. 162261. New York: Academic Press.Google Scholar
Jacob, J. and Pomeroy, D. E., 1979. The feather lipids of the Maribou Stork (Leptoptilas crumeniferus). Comp. Biochem. Physiol., 64B, 201303.Google Scholar
Jenkinson, D. M. and Blackburn, P. S., 1968. The distribution of nerves, monoamine oxidase and cholinesterase in the skin of poultry. Res. Vet. Sci., 9, 429434.CrossRefGoogle ScholarPubMed
Lavker, R. M., 1975. Lipid synthesis in chick epidermis. J. Invest. Derm., 65, 93101.CrossRefGoogle ScholarPubMed
Lebedinsky, N. G., 1929. Über die Hautzeichnungen bei Vögeln und die evolutions-theoretische Bedeutung des Fehlens artspecifischen Zeichungen in der verdeckten Haut der Warmblüten. Ztschr. Morph. Okol. Tiere, 14, 630698.CrossRefGoogle Scholar
Lee, P., and Schmidt-Nielsen, K., 1971. Respiratory and cutaneous evaporation in the Zebra finch: effect on water balance. Amer. J. Physiol., 220, 15981609.CrossRefGoogle ScholarPubMed
Leslie, G. A. and Martin, L. N., 1973. Studies on the secretory immunology system of serum and secretory IgA of the chicken. J. Immunol., 110, 19.CrossRefGoogle ScholarPubMed
Lucas, A. M., 1968. Lipoid secretion in the avian epidermis. Anat. Rec., 160, 386387.Google Scholar
Lucas, A. M., 1980. Lipoid secretion by body epidermis in avian skin. In The Skin of Vertebrates. Eds Spearman, R. I. C. and Riley, P. A., pp. 3345. Symp. Linn. Soc. Lond., 9.Google Scholar
Lucas, A. M. and Jamroz, C., 1961. Atlas of Avian Hematology, pp. 271. Washington, D.C.: U.S. Dept of Agric.Google Scholar
Lucas, A. M. and Stettenheim, P. R., 1972. Avian Anatomy. Integument, 2 Vols, pp. 750. Washington, D.C.: U.S. Dept. of Agric.Google Scholar
McMeekin, T. A. and Thomas, C. J., 1979. Aspects of the microbial ecology of poultry processing and storage: a review. Food Technology in Australia, January, 3543.Google Scholar
McMullen, D. B. and Beaver, P. C., 1945. Studies on schistosome dermatitis. IX. Am. J. Hyg., 42, 128154.Google Scholar
Malinovsky, L., 1968. Types of sensory corpuscles common to mammals and birds. Folia Morph., 16, 6773.Google ScholarPubMed
Matoltsy, A. G., 1969. Keratinization of avian epidermis. An ultrastructural study of the new-born chick skin. J. Ultrastruct. Res., 29, 438458.CrossRefGoogle Scholar
Matoltsy, A. G. and Huszar, J., 1972. Keratinization of the reptilian epidermis: an ultrastructural study of turtle skin. J. Ultrastruct. Res., 38, 87101.CrossRefGoogle ScholarPubMed
Menon, G. K., Aggarwal, S. K. and Lucas, A. M., 1980. Evidence for the holocrine nature of lipoid secretion by avian epidermal cells. A histochemical and fine structural study of rachis, toe web, and the uropygial gland. J. Morph., in press.CrossRefGoogle Scholar
Mier, P. D. and Cotton, W. K., 1976. The Molecular Biology of Skin, pp. 469. Oxford: Blackwell.Google Scholar
Nicolaides, N., 1963. Human skin surface lipids, origin, composition and possible function. In The Sebaceous Glands. Advances in the Biology of Skin. Vol. 4. Eds Montagna, W. Ellis, R. A. and Silvers, A. F., pp. 167187. London: Academic Press.CrossRefGoogle Scholar
Nikkari, T., 1974. Comparative chemistry of sebum. J. Invest. Derm., 62, 257267.CrossRefGoogle ScholarPubMed
Oluyemi, J. A. and Roberts, F. A., 1979. Poultry Production in Warm Wet Climates, pp. 197. London: Macmillan.Google Scholar
O'Roke, E. C., 1934. A malaria-like disease of ducks caused by Leucocytozoonanatis. Wickward. Univ. Mich. Sch. Forestry Conserv. Bull., 4.Google Scholar
Palmer, R. S., 1972. Patterns of molting. In Avian Biology, Vol. 2. Eds King, J. R. and Parkes, K. C., pp. 66102. New York: Academic Press.Google Scholar
Pautard, F. G. E., 1963. Mineralisation of keratin and its comparison with the enamel matrix. Nature, Lond., 199, pp. 531.CrossRefGoogle ScholarPubMed
Payne, L. N., 1971. The lymphoid system. In Physiology and Biochemistry of the Domestic Fowl, Vol. 2. Eds Bell, D. J. and Freeman, B. M., pp. 9851037. London: Academic Press.Google Scholar
Prentice, P. I. and Eastlick, H. L., 1953. The presence of pigment in the white Plymouth Rock fowl. Anat. Rec., 117, 617618.Google Scholar
Quilliam, T. A., 1966. Unit design and array patterns in receptor organs. In Touch, Heat and Pain. Eds de Reuck, A. V. S. and Knight, J., pp. 116. Ciba Foundation Symposium. London: Churchill.Google Scholar
Quilliam, T. A., 1980. Nerve fibres and free nerve endings in the epidermis of seven mammalian and one reptilian species. In The Skin of Vertebrates. Eds Spearman, R. I. C. and Riley, P. A., pp. 293301. Symp. Linn. Soc. Lond., 9.Google Scholar
Quilliam, T. A. and Armstrong, J., 1963. Mechanoreceptors. Endeavour, 22, No. 86, 5560.CrossRefGoogle ScholarPubMed
Romer, A. S., 1966. Vertebrate Paleontology, 3rd Edn, pp. 468. London: Cambridge University Press.Google Scholar
Scholander, P. F., Hock, R., Walters, V. and Irving, L., 1950. Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation and basal metabolism. Biol. Bull. Mar. Biol. Lab., Woods Hole, 99, 259271.CrossRefGoogle Scholar
Shah, R. V., Menon, G. K., Desai, J. H. and Jani, M. B., 1977. Feather loss from capital tracts of painted storks related to growth and maturity 1. Histophysiological changes and lipid secretion in the integument. J. Anim. Morphol. Physiol., 24, 99107.Google Scholar
Smith, R. M. and Suthers, R., 1969. Cutaneous water loss as a significant contribution to temperature regulation in heat-stressed pigeons. Physiologist, 12, 358.Google Scholar
Spearman, R. I. C., 1964. The evolution of mammalian keratinized structures. In The Mammalian Epidermis and its Derivatives. Ed. Ebling, F. J.. Symp. Zool. Soc. Lond., 12, 6781.Google Scholar
Spearman, R. I. C., 1966. The keratinization of epidermal scales, feathers and hairs. Biol. Rev., 41, 5396.CrossRefGoogle ScholarPubMed
Spearman, R. I. C., 1969. The epidermis and feather follicles of the King penguin (Aptenodytes patagonica) (Aves). Z. Morph. Tiere, 64, 361372.CrossRefGoogle Scholar
Spearman, R. I. C., 1971. Integumentary system. In Physiology and Biochemistry of the Domestic Fowl, Vol. 2. Eds Bell, D. J. and Freeman, B. M., pp. 603620. London: Academic Press.Google Scholar
Spearman, R. I. C., 1973. The Integument, pp. 308. London: Cambridge University Press.Google Scholar
Spearman, R. I. C., 1977a. Hair follicle development, cyclical changes and hair form. In The Physiology and Pathophysiology of the Skin, Vol. 4. Ed. Jarrett, A., pp. 12551292. London: Academic Press.Google Scholar
Spearman, R. I. C., 1977b. Keratins and keratinization. In Comparative Biology of Skin. Ed. Spearman, R. I. C., pp. 335352. Symp. Zool. Soc. Lond., 39.Google Scholar
Spottel, W., 1914. Über die Farben der Vogeliedern. Die Farbung der Columba livia nebst Beobachtungen über die mechanischen Bauver haltnisse der Vogelieder. Zool. Jb. (Anat), 38, 357426.Google Scholar
Stettenheim, P. R., 1972. The integument. In Avian Biology, Vol. 2. Eds King, J. R. and Parkes, K. C., pp. 263. New York: Academic Press.Google Scholar
Titchener, R. N., 1980. Inhabitants of avian skin with special reference to ectoparasitic infestations and diseases of poultry skin. Proc. Roy. Soc. Edinb., 79B, 7583.Google Scholar
Van Campen, M., 1971. Some aspects of thermoregulation in the white Leghorn fowl. Internal. J. Biometrics, 15, 244246.Google Scholar
Veghte, J. H., 1964. Thermal and metabolic responses of the grey Jay to cold stress. Physiol. Zool., 37, 316328.CrossRefGoogle Scholar
Voitkevich, A. A., 1966. The Feathers and Plumage of Birds, pp. 367. London: Sidgwick and Jackson.Google Scholar
Watson, G. E., 1963. Feather replacement in birds. Science, N.Y., 139, 5051.CrossRefGoogle ScholarPubMed
Williams, R. W., 1946. A contribution to our knowledge of the bionomics of the common North American chigger Entrombicula alfreddugesi Oudemans, with a description of rapid collecting method. Am. J. Trop. Med., 26, 243250.CrossRefGoogle ScholarPubMed
Williamson, G. and Payne, J. A., 1978. An Introduction to Animal Husbandry in the Tropics, 3rd Edn. London: Longmans.Google Scholar
Witschi, E. and Woods, R. P., 1936. The bill of the sparrow as an indicator for male sex hormone. Structural basis. J. Exp. Zool., 73, 445459.CrossRefGoogle Scholar
Wrench, R., 1980. Dendriticcellmigrations involving the pilosebaceous unit in development of murine skin. Zool. J. Linn. Soc., 70, 1953.CrossRefGoogle Scholar
Wrench, R., Hardy, J. A. and Spearman, R. I. C., 1980. Sebokeratocytes in avian epidermis with mammalian comparisons. In The Skin of Vertebrates. Eds Spearman, R. I. C. and Riley, P. A., pp. 4754. Symp. Linn. Soc. Lond., 9.Google Scholar