Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-16T11:20:30.878Z Has data issue: false hasContentIssue false

III.—Genotypic Asymmetries

Published online by Cambridge University Press:  11 June 2012

Gunnar Dahlberg
Affiliation:
Director of the State Institute of Human Genetics, University of Uppsala.
Get access

Extract

In two earlier publications the author has suggested a theory of genetically determined asymmetries. Inherited asymmetry may be of two types. Many characters are unilateral (e.g. the aortic arch or the tricuspid valve of the human heart) or in some other way placed asymmetrically (e.g. the differentiation of organs along the cephalad-caudad axis of the body). The orientation of such gross asymmetries is in general irreversible. The author has pointed out that the study of uniovular twins which exhibit mirror-image similarities draws attention to a smaller class of reversible asymmetries. While an asymmetrical disposition of such a character is transmitted, its orientation is not fixed in the process of transmission. Thus a character may show itself on the left side in one generation or in one individual of a litter, and on the right side in another generation or in a litter mate. The extreme types of variation between which many transitional forms may be found are:

(a) From left to right, or vice versa.

(b) From caudad to cephalad extremity, or vice versa.

(c) From dorsal to ventral surface, or vice versa.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1944

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Bagg, H. J., 1929. “Hereditary Abnormalities of the Limbs, their Origin and Transmission,” Amer. Journ. Anat., XLIII.Google Scholar
Bagg, H. J., and Little, C. C., 1924. “Hereditary Structural Defects in the Descendants of Mice exposed to Roentgen Ray Irradiation,” Amer. Journ. Anat., XXXIII.Google Scholar
Bean, Achsa Mabel, 1928. “A Morphological Analysis of the Foot Abnormalities occurring in the Descendants of X-rayed Mice,” Amer. Journ. Anat., XLIII.Google Scholar
Bonnevie, Kristine, 1930. “Vererbbarer Cerebrospinaldefekt (?) bei Mäusen mit sekundären Augen- und Fussanomalien, nebst Turmschädelanlage. Vorläufige Mitteilung,” Avh. Norske Vidensk. Akad. I Mat.-Nat. Kl. No. 13.Google Scholar
Bonnevie, Kristine, 1932. “Die vererbbaren Kopf- und Fussanomalien der Little und Baggschen Mäuserasse in ihrer embryologischen Bedingtheit,” Zeits. indukt. Abstamm. u. Vererbungslehre, LXII.Google Scholar
Breitenbecher, J. K., 1925. “The Inheritance of Sex-limited Bilateral Asymmetry in Bruchus,” Genetics, X.Google Scholar
Charles, Donald R., 1938. “Studies on Spotting Patterns,” Genetics, XXIII.Google Scholar
Chase, Herman B., 1938. “Biometric Study of White Spotting in the Guinea Pig,” Genetics, XXIII.Google Scholar
Chase, Herman B., 1939. “Studies on the Tricolor Pattern of the Guinea Pig,” Genetics, XXIV.Google Scholar
Dahlberg, G., 1926. Twin Births and Twins from a Hereditary Point of View, Stockholm.Google Scholar
Dahlberg, G., 1929. “Genotypische Asymmetrien,” Zeits. indukt. Abstamm. u. Vererbungslehre, LIII.Google Scholar
Goldschmidt, R., 1927. Physiologische Theorie der Vererbung, Berlin.Google Scholar
Guyer, M. F., and Smith, E. A., 1920. “Studies on Cytolysins,” Journ. Exp. Zool., XXXVIII.Google Scholar
Kemp, T., and Ravn, J., 1934. “Ueber erbliche Hand- und Fussdeformitäten in einem 140-Köpfigen Geschlecht, nebst einigen Bemerkungen über Poly- und Syndaktylie beim Menschen,” Acta Psychiat. Kbh., VII.Google Scholar
Koehler, O., 1923. “Ueber die Vererbung der Vielfingrigkeit beim Menschen,” Biol. Zbl., XLIII.Google Scholar
Koehler, O., 1929. “Zur Frage der Vererbung der menschlichen Vielfingrigkeit,” Biol. Zbl., XLIX.Google Scholar
Lenz, F., 1926. “Erblichkeitslehre im allgemeinen und beim Menschen im besonderen,” Handbuch der normalen und pathologischen Physiologie, Berlin.Google Scholar
Little, C. C., 1931. “The Effects of Selection on Eye and Foot Abnormalities occurring among the Descendants of X-rayed Mice,” Amer. Nat., LXV.Google Scholar
Little, C. C., and Bagg, H. J., 1924–25. “The Occurrence of Four Inheritable Morphological Variations in Mice and their possible Relation to Treatment with X-Rays,” Journ. of Exp. Zool., XLI.Google Scholar
Przibram, H., 1908. “Vererbungsversuche über asymmetrische Augenfärbung bei Angorakatzen,” Arch. Entwmech. Org., XXV.Google Scholar
Punnett, R. C., and Pease, M. S., 1929. “Genetic Studies in Poultry,” Journ. Genet., XXI.Google Scholar
Schultz, W., 1919. “Versteckte Erbfaktoren der Albinos für Farbung beim Russenkaninchen im Soma dargestellt und rein somatisch zur Wirkung gebracht,” Zeits. indukt. Abstamm. u. Vererbungslehre, XX.Google Scholar
Sverdrup, A., 1922. “Postaxial Polydactylism in Six Generations of a Norwegian Family,” Journ. Genet., XII.Google Scholar
Thomsen, O., 1927. “Einige Eigentümlichkeiten der erblichen Poly- und Syndaktylie bei Menschen,” Acta Med. Scand., LXV.Google Scholar
Vogel, K., 1913. “Ueber familiäres Auftreten von Polydaktylie und Syndaktylie,” Fortschr. Rontgenstr., XX.Google Scholar
Wright, S., 1926. “Effects of Age of Parents on Characteristics of the Guinea Pig,” Amer. Nat., LX.Google Scholar
Wright, S., and Chase, H., 1936. “On the Genetics of the Spotted Pattern of the Guinea Pig,” Genetics, XXI.Google Scholar