Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-31T09:19:38.116Z Has data issue: false hasContentIssue false

IV.—The Storage of Red Cells

Published online by Cambridge University Press:  05 December 2011

J. Blagdon
Affiliation:
North-East Metropolitan Regional Blood Transfusion Centre, Crescent Drive, Brentwood, Essex.
Get access

Extract

In 1967 when Tullis opened a discussion on ‘Methods and standards of blood transfusion’ he said that the discovery of citrate, which made it possible to store blood for a few days before transfusion, was perhaps the worst step that ever took place, because it made it possible for clinicians to abuse blood. Now they could collect it in a bottle, put it in a refrigerator for a few days and fully inactivate many labile components such as platelets, anti-haemophilic globulin, leucocytes and lipoproteins [1].

When blood is stored prior to transfusion there is a deterioration in the viability of the red cell in addition to other components. This has been assessed mainly on the post-transfusion survival, but in recent years more interest has been shown in the oxygen-carrying capacity.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

[1] Tullis, J., 1967. International Working Conference on the Freeze-Preservation of Blood held 28.11.67–1.12.67.Google Scholar
[2] Valtis, D. J. and Kennedy, A. C., 1964. Defective gas-transport function of stored red blood cells. Lancet, 119.CrossRefGoogle Scholar
[3] Chanutin, A., 1970. The role of phosphorylated compounds in red cell preservation. In Modern Problems of Blood Preservation, pp. 7888 (Ed. Spielmann, W. and Seidl, S.). Stuttgart: Fischer.Google Scholar
[4] Sugita, Y. and Chanutin, A., 1963. Electrophorectic studies of red cell haemolysates supplemented with phosphorylated carbohydrate intermediates. Proc. Soc. Exp. Biol. Med., 112, 72.CrossRefGoogle Scholar
[5] Chanutin, A. and Curnish, R. R., 1964. Factors influencing the electrophoretic patterns of red cell haemolysates analysed in cacodylate buffers. Archs Biochem. Biophys., 106, 433.CrossRefGoogle Scholar
[6] Chanutin, A. and Curnish, R. R., 1965. The effect of adenosine, inosine, and adenine on the concentrations of organic phosphate and an electrophoretic component (B) of human red cells during storage of blood in acid-citrate-dextrose and citrate-phosphate-dextrose. Transfusion, 5, 254.CrossRefGoogle Scholar
[7] Chanutin, A. and Curnish, R. R., 1965. Effect of inorganic and organic phosphates on formation of haemoglobin-phosphate complexes as determined by electrophoresis. Proc. Soc. Exp. Biol. Med., 120, 291.CrossRefGoogle ScholarPubMed
[8] Benesch, R. and Benesch, R. E., 1967. The effect of organic phosphates from the human Erythrocyte on the allosteric properties of haemoglobin. Biochem. Biophys. Res. Commun., 26, 162167.CrossRefGoogle Scholar
[9] Benesch, R. and Benesch, R. E., 1967. The influence of organic phosphates on the oxygenation of haemgolobin. Fedn Proc. Fedn Am. Soc. Exp. Biol., 26, 673.Google Scholar
[10] Benesch, R. and Benesch, R. E., 1968. Oxygenation and ion transport in red cells. Science, N.Y., 160, 83.CrossRefGoogle ScholarPubMed
[11] Benesch, R., Benesch, R. E. and Yu, C. I., 1968. Reciprocal binding of oxygen and dephosphoglycerate by human haemoglobin. Proc. Natn Acad. Sci. U.S.A., 59, 526532.CrossRefGoogle Scholar
[12] Chanutin, A. and Curnish, R. R., 1967. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Archs Biochem. Biophys., 121, 96102.CrossRefGoogle ScholarPubMed
[13] Rapoport, S., 1947. Dimensional, osmotic and chemical changes of Erythrocytes in stored blood. I. Blood preserved in sodium citrate, neutral and acid citrate glucose (ACD) mixtures. J. Clin. Invest., 26, 591615.CrossRefGoogle Scholar
[14] Fortier, N. L., Hirsch, N. M. and Valeri, C. R., 1969. Restoration of 2,3-DPG and ATP in ACD-stored red blood cells. Forsv. Med., 5, 250.Google Scholar
[15] Gibson, J. G. 2nd, Rees, S. B., Mcmanus, T. J. and Scheitlin, W. A., 1957. A citrate-phosphate-dextrose solution for the preservation of human blood. Am. J. Clin. Path., 28, 569.CrossRefGoogle Scholar
[16] Gibson, J. G., Gregory, C. B., Button, L. N., 1961. Citrate-phosphate-dextrose solution for preservation of human blood. Transfusion, 1, (5).CrossRefGoogle ScholarPubMed
[17] Bowman, H. S., 1963. Red cell preservation in citrate-phosphate-dextrose and in acid-citrate-dextrose: comparison of erythrocyte viability after 28 days refrigerated storage. Transfusion, 3, (5).CrossRefGoogle ScholarPubMed
[18] Nakao, K. Wada, T. and Kamiyama, T., 1962. A direct relationship between adenosine tri-phosphate level and in vivo viability of erythrocytes. Nature, Lond., 194, 877.CrossRefGoogle Scholar
[19] Simon, E. R., Chapman, R. G. and Finch, C. A., 1962. Adenine in red cell preservation. J. Clin. Invest., 41, 351.CrossRefGoogle ScholarPubMed
[20] De Verdier, C. H., Hogman, H. C., Garby, L. and Killander, J., 1964. Storage of human red blood cells. II. The effect of pH and of the addition of adenine. Acta Physiol. Scand., 60, 141.CrossRefGoogle Scholar
[21] Shields, C. E. and Camp, F. R., 1968. Comparison studies of whole blood stored in ACD and CPD and with adenine. Transfusion, 8, 1. (USAMRL Rep. 719, 1967. DDC AD No. 654504).CrossRefGoogle ScholarPubMed
[22] Shields, C. E., Dennis, L. H., Eichelberger, J. W. and Conrad, M. E., 1967. The rapid infusion of large quantities of ACD adenine solution into humans. Transfusion, 7, 133.CrossRefGoogle ScholarPubMed
[23] De Verdier, C. H., Finnson, M., Garby, L., Hogman, C. F., Johansson, S. G. O. and Akerblom, O., 1965. Experience of blood preservation in ACD adenine solution. Proc. 10th Congr. Eur. Soc. Haemat., Strasburg.Google Scholar
[24] Ackerblom, O., De Verdier, C. H., Finnson, M., Garby, L., Hogman, C. F. and Johansson, S. G. O., 1967. Further studies on the effect of adenine in blood preservation. Transfusion, 7, 1.CrossRefGoogle Scholar
[25] Philips, F. S., Thieresch, J. B. and Bendisch, A., 1952. Adenine intoxication in relation to in vivo formation and deposition of 2,8-dioxyadenine in renal tubules. J. Pharmac. Exp. Ther. 104, 20.Google ScholarPubMed
[26] Seidl, S. and Spielmann, W. (Eds.), 1970. Comparative studies on the effect of different nucleosides in red cell preservation. In Modern Problems of Blood Preservation, pp. 7277. Stuttgart: Fischer.Google Scholar
[27] Bunn, H. F., May, M. H., Kocholaty, W. F. and Shields, C. E., 1969. Haemoglobin function in stored blood. J. Clin. Invest., 48, 311 (USAMRL Rep. 790, 1968 DDC AD No. 680802).CrossRefGoogle ScholarPubMed
[28] Fritzsche, W. H. C., Siedentopf, W., Spielmann, W., Ferber, E. and Fischer, H., 1965. Untersuchungen zur verbesserten Zellkonservierung. IV. Uberlebenszeitbestimmungen und klinische Erfahrungen mit IAG-konserviertem. Blut. Klin. Wschr., 43, 881887.CrossRefGoogle Scholar
[29] Hogman, C. F. and Akerblom, O., 1969. Maintenance of a normal oxygen transport function of stored red blood cells. II. Practical aspects. Forsv. Med., 5, 247.Google Scholar
[30] Fischer, H., Ferber, E., Siedentopf, H. G. and Spielmann, W., 1965. Preservation of human blood in the liquid state; the practical importance of some new media (Proc. 10th Congr. Int. Soc. Blood Transf., 616, Stockholm, 1964.Google Scholar
[31] Tullis, J. L., Gibson, J. G., Sproul, M. T., Tinch, R. J. and Baudanza, P., 1970. Advantages of the high glycerol mechanical systems for red cell preservation; a 10-year study of stability and yield. In Modern Problems of Blood Preservation, pp. 161167. (Ed. Spielmann, W. and Seidl, S..) Stuttgart: Fischer.Google Scholar
[32] Huggins, C., 1970. Reversible agglomeration—a practical method for removal of glycerol from frozen blood. In Modern Problems of Blood Preservation, pp. 138155. (Ed. Spielmann, W. and Seidl, S..) Stuttgart: Fischer.Google Scholar
[33] Valeri, C. R., 1970. Recent advances in the preservation of human red cells by glycerol freezing techniques. In Modern Problems of Blood Preservation, pp. 125137. (Ed. Spielmann, W. and Seidl, S..) Stuttgart: Fischer.Google Scholar
[34] Jenkins, W. J. and Blagdon, J., 1971. The long-term storage of blood for transfusion using an improved container for freezing the red cells in liquid nitrogen. J. Clin. Path., 24, 685689.CrossRefGoogle ScholarPubMed
[35] Pert, J. H., Schork, P. K. and More, R., 19631964. Low temperature preservation of human erythrocytes: biochemical and clinical aspects. Proc. 9th Congr. Int. Soc. Blood Transf., pp. 4753, Mexico, 1962. [XVIIIth Scient. Meet. Protein Foundation, 1963. (Basel/New York: Karger, 1964) and Clin. Res., 11, 197.]Google Scholar
[36] Krijnen, H. W., De Wit, J. J., Fr.M., , Kuivenhoven, A. C. J., Loos, J. A. and Prins, H. K., 1964. Glycerol treated human red cells frozen with liquid nitrogen, Vox Sang., 9, 559572.CrossRefGoogle ScholarPubMed