Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-15T04:53:50.989Z Has data issue: false hasContentIssue false

XVIII.—Studies on Reproduction in Wild-Type and Female-Sterile Mutants of Drosophila melanogaster (Meig)

Published online by Cambridge University Press:  11 June 2012

R. A. Beatty
Affiliation:
Genetics Laboratory, Animal Breeding and Genetics Research Organization, Edinburgh.
Get access

Extract

Drosophila mutants are usually defined by structural characteristics exhibited by the adult fly. In certain cases (homozygous lethal mutants and female-sterile mutants) the mutant may or may not be defined structurally, but does exhibit the physiological characteristic of death at some stage.

The females of homozygous lethals are sterile, for the F1; represented by the germinal cells, dies with the mother. The term female-sterile, however, is applied to the well-known cases in which the mother but not her F1 achieve imaginal life.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1949

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Aboim, A. N., 1945. “Développement embryonnaire et post-embryonnaire des gonades normales et agamétiques de Drosophila melanogaster”, Rev. Suisse de Zool., LII, 53154.Google Scholar
Anderson, R. C., 1945. “A study of the factors affecting fertility of lozenge females of Drosophila melanogaster”, Genetics, XXX, 280296.Google Scholar
Bridges, C. B., and Brehme, K. S., 1944. “The Mutants of Drosophila melanogaster”, Carnegie Inst. Wash. Pub., No. 552.Google Scholar
Bridges, C. B., and Dobzhansky, T., 1933. “The mutant ‘proboscipedia” in Drosophila melanogaster—a case of hereditary homoösis”, Arch. Ent. Mech., CXXVII, 575590.CrossRefGoogle Scholar
Clancy, C. W., and Beadle, G. W., 1937. “Ovary transplants in Drosophila melanogaster: Studies of the Characters Singed, Fused, and Female-Sterile”, Biol. Bull., LXXII, 4756.CrossRefGoogle Scholar
Darlington, C. D., and La Cour, L., 1942. The Handling of Chromosomes, London.Google Scholar
Dobzhansky, T., 1927. “Studies on the manifold effect of certain genes in Drosophila melanogaster”, Z.i.A.V., XLIII, 330388.Google Scholar
Dobzhansky, T., 1930. “Studies on the Intersexes and Supersexes in Drosophila melanogaster”, Izv. Bur. Genet. (Leningrad), No. 8, 91–158. (In Russian, with English summary.)Google Scholar
Dobzhansky, T., 1937. “Further data on Drosophila miranda and its hybrids with Drosophila pseudo-obscura”, Journ. Genet., XXXIV, 135151.Google Scholar
Dobzhansky, T., 1947. Genetics and the Origin of Species, Columbia.Google Scholar
Gloor, H., and Hadorn, E., 1942. “Vergleich der Schädingungen im Ovar von Drosophila melanogaster bewirkt durch einen Letalfaktor und ein Sterilitätsgen”, Arch. Vererb. Soz. Rass., XII, 438440.Google Scholar
Hadorn, E., 1937. “Transplantation of gonads from lethal to normal larvæ in Drosophila melanogaster”, Proc. Soc. Exp. Biol., XXXVI, 632634.Google Scholar
Hadorn, E., and Zeller, H., 1943. “Fertilitätsstudien an Drosophila melanogaster. I. Untersuchungen zum altersbedingten Fertilitätsabfall”, Arch. Ent. Mech., CXLII, 276300.Google Scholar
Kaufmann, B. P., 1940. “The nature of hybrid sterility—abnormal development in eggs of hybrids between Drosophila miranda and Drosophila pseudo-obscura”, Journ. Morph., LXVI, 197212.Google Scholar
Kerkis, J. J., 1931. “The growth of the gonads in Drosophila melanogaster”, Genetics, XVI, 212224.Google Scholar
Kerkis, J. J., 1933. “Development of gonads in hybrids between Drosophila melanogaster and Drosophila simulans”, Journ. Exp. Zool, LXVI, 477509.Google Scholar
Lynch, C. J., 1919. “An analysis of certain cases of intra-specific sterility”, Genetics, IV, 501533.Google Scholar
Mather, K., 1946. Statistical Analysis in Biology, London.Google Scholar
Merrell, D. J., 1947. “A mutant in Drosophila melanogaster affecting fertility and eye colour”, Amer. Nat., LXXXI, 399400.Google Scholar
Pontecorvo, G., 1943. “Hybrid sterility in artificially produced recombinants between Drosophila melanogaster and D. simulans”, Proc. Roy. Soc. Edin., B, LXI, 385397.Google Scholar
Poulson, D. F., 1937. “The embryonic development of Drosophila melanogaster”, Act. Sci. et Indust., No. 498, III.Google Scholar
Poulson, D. F., 1940. “The effects of certain X-chromosome deficiencies on the embryonic development of Drosophila melanogaster”, Journ. Exp. Zool., LXXXIII, 271318.Google Scholar
Rendel, J. M., 1944. “Genetics and cytology of Drosophila subobscura. II. Normal and selective matings in Drosophila subobscura”, Journ. Genet., XLVI, 286302.Google Scholar
Robertson, F. W., and Sang, J. H., 1944 (I) and (II). “The ecological determinants of population growth in a Drosophila culture. I. Fecundity of adult flies. II. Circumstances affecting egg viability”, Proc. Roy. Soc. Lond., Ser. B, CXXXII, 258–277 and 277291.Google Scholar
Spurway, H., 1948. “Genetics and cytology of Drosophila subobscura. IV. An extreme example of delay in gene action, causing sterility”, Journ. Genet., XLIX, 126140.Google Scholar
Vogt, M., 1946. “Zur labilen Determination der Imaginalscheiben von Drosophila. IV. Die Umwandlung präsumptiven Rüsselgewebes in Bein- oder Fuhlergewebe”, Zeits. Natforsch., I, No. 8, 469475.Google Scholar