Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T06:39:17.609Z Has data issue: false hasContentIssue false

Oestrogen-induced pro-cathepsin D in breast cancer: from biology to clinical applications

Published online by Cambridge University Press:  05 December 2011

Henri Rochefort
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Patrick Augereau
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Pierre Briozzo
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
François Capony
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Vincent Cavailles
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Gilles Freiss
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Marcel Garcia
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Thierry Maudelonde
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Muriel Morisset
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Isabelle Touitou
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Françoise Vignon
Affiliation:
Unité Hormones et Cancer (U 148) INSERM and Laboratoire de Biologie Cellulaire, Université de Montpellier, Faculté de Médecine, 60 Rue de Navacelles, 34090 Montpellier, France
Get access

Synopsis

In addition to secreted growth factors, acting as autocrine or paracrine mitogens, breast cancer cells secrete other proteins whose function and significance in mammary carcinogenesis may be important. Among them, proteases are particularly interesting since it has been suggested that they play a role in metastatic process, and since at least two of them, the tissue type plasminogen activator and pro-cathepsin D, the precursor of a lysosomal protease, are induced by oestrogens and secreted in excess in some mammary cancer cells.

In oestrogen-receptor-positive human breast cancer cell lines (MCF7, ZR75–1), oestrogens stimulate cell proliferation and specifically increase the secretion into the culture medium of a 52,000-dalton (52-kDa) glycoprotein identified as the secreted precursor of a cathepsin D bearing mannose-6-phosphate signals, which is routed to lysosomes via mannose-6-phosphate-IGF-II receptors. We have determined the structure of this procathepsin D by sequencing its complete cDNA sequence, its chromosomal localisation and its transcriptional regulation by oestrogens and other mitogens. In breast cancer cells, pro-cathepsin D production and secretion is much higher and its processing is altered compared to normal mammary epithelial cells in culture. In vitro, pro-cathepsin D acts as an autocrine mitogen on breast cancer cells and can be activated at acidic pH to degrade extracellular matrix, suggesting a role in mediating the effect of oestrogens on tumour growth and invasion. Retrospective clinical studies indicate a significant correlation between high 52-kDa cathepsin D concentrations in the cytosol of primary breast cancer and poor prognosis (Danish Breast Cancer Group, S. Thorpe, Copenhagen). We propose that among the proteases secreted by cancer cells, 52-kDa cathepsin D is important both as a tissue marker in breast cancer and as a potential factor involved in carcinogenesis.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augereau, P., Garcia, M., Mattei, M. G., Cavailles, V., Depadova, F., Derocq, D., Capony, F., Ferrara, P. & Rochefort, H. 1988. Cloning and sequencing of the 52K cathepsin D cDNA of MCF7 breast cancer cells and mapping on chromosome 11. Molecular Endocrinology 2, 186192.CrossRefGoogle ScholarPubMed
Barrett, A. J. 1970. Cathepsin D: purification of isoenzymes from human and chicken liver. Biochemical Journal 117, 601607.CrossRefGoogle ScholarPubMed
Briozzo, P., Morisset, M., Capony, F., Rougeot, C. & Rochefort, H. 1988. In vitro degradation of extracellular matrix with Mr 52,000 cathepsin D secreted by breast cancer cells. Cancer Research 48, 36883692.Google Scholar
Butler, W. B., Kirkland, W. L. & Jorgensen, T. L. 1979. Induction of plasminogen activator by oestrogen in a human breast cancer cell line (MCF7). Biochemical and Biophysical Research Communications 90, 13281334.CrossRefGoogle Scholar
Capony, F., Garcia, M., Capdevielle, J., Rougeot, C., Ferrara, P. & Rochefort, H. 1986. Purification and first characterization of the secreted and cellular 52-kDa proteins regulated by oestrogens in human breast cancer cells. European Journal of Biochemistry 161, 505512.CrossRefGoogle ScholarPubMed
Capony, F., Morisset, M., Barrett, A. J., Capony, J. P., Broquet, P., Vignon, F., Chambon, M., Louisot, P. & Rochefort, H. 1987. Phosphorylation, glycosylation and proteolytic activity of the 52K oestrogen-induced protein secreted by MCF7 cells. Journal of Cell Biology 104, 253262.CrossRefGoogle Scholar
Capony, F., Rougeot, C., Montcourrier, P., Cavailles, V., Salazar, G. & Rochefort, H. 1989. Increased secretion and altered processing and glycosylation of pro-cathepsin D in human mammary cancer cells (submitted for publication).Google Scholar
Cavailles, V., Garcia, M., Salazar, G., Domergue, J., Simony, J., Pujol, H. & Rochefort, H. 1987. Immunodetection of oestrogen receptor and 52K protein in fine needle aspirates of breast cancer. Journal of the National Cancer Institute 79, 245252.Google Scholar
Cavailles, V., Augereau, P., Garcia, M., Rochefort, H. 1988. Oestrogens and growth factors induce the mRNA of the 52K-pro-cathepsin-D secreted by breast cancer cells. Nucleic Acids Research 16, 19031919.CrossRefGoogle ScholarPubMed
Cavailles, V., Garcia, M. & Rochefort, H. 1989. Regulation of cathepsin D and pS2 gene expression by growth factors in MCF7 human breast cancer cells. Molecular Endocrinology (in press).CrossRefGoogle Scholar
Chambon, P., Dierich, A., Gaub, M. P., Jakowlew, S., Jongstra, J., Krust, A., Lepennec, J. P., Oudet, P. & Reudelhuber, T. 1984. Promoter elements of genes coding for proteins and modulation of transcription by oestrogens and progesterone. Recent Progress in Hormone Research 40, 142.Google Scholar
De Duve, C. 1984. In A Guided Tour of the Living Cell, Vol. 1. New York: Scientific American Books Inc.Google Scholar
Dickson, R. B., Huff, K. K., Spencer, E. M. & Lippman, M. E. 1986. Induction of epidermal growth factor-related polypeptides by 17β estradiol in MCF7 human breast cancer cells. Endocrinology 118, 138142.CrossRefGoogle Scholar
Duffy, M. J., O'Grady, P. & O'Siorain, L. 1988. Plasminogen activator. A new marker in breast cancer. In Progress in Cancer Research and Therapy, Hormones and Cancer 3, eds Bresciani, F., King, R. J. B., Lippman, M. E. & Raynaud, J. P., Vol. 35, pp. 300303. New York: Raven Press.Google Scholar
Dupont, W. D. & Page, D. L. 1985. Risk factors for breast cancer in women with proliferative breast disease. New England Journal of Medicine 312, 146151.CrossRefGoogle ScholarPubMed
Faust, P. L., Kornfeld, S. & Chirgwin, J. M. 1985. Cloning and sequence analysis of cDNA for human cathepsin D. Proceedings of the National Academy of Sciences of the U.S.A. 82, 49104914.CrossRefGoogle ScholarPubMed
Freiss, G., Vignon, F. & Rochefort, H. 1988. Characterization and properties of two monoclonal antibodies specific for the Mr 52,000 precursor of cathepsin D in human breast cancer cells. Cancer Research 48, 37093715.Google Scholar
Freiss, G., Vignon, F., Pau, B., Paolucci, F. & Rochefort, H. 1989. A two-site immunoenzymoassay of 52-kDa pro-cathepsin D and its use in human breast diseases. Clinical Chemistry 35 (in press).CrossRefGoogle Scholar
Gal, S. & Gottesman, M. M. 1986. The major excreted protein of transformed fibroblasts in an activable acid-protease. Journal of Biological Chemistry 261, 17601765.CrossRefGoogle Scholar
Garcia, M., Capony, F., Derocq, D., Simon, D., Pau, B. & Rochefort, H. 1985. Monoclonal antibodies to the oestrogen-regulated Mr 52,000 glycoprotein: Characterization and immunodetection in MCF7 cells. Cancer Research 45, 709716.Google Scholar
Garcia, M., Salazar-Retana, G., Pages, A., Richer, G., Domergue, J., Pages, A. M., Cavalié, G., Martin, J. M., Lamarque, J. L., Pau, B., Pujol, H. & Rochefort, H. 1986. Distribution of the Mr 52,000 oestrogen-regulated protein in benign breast discases and other tissues by immunohistochemistry. Cancer Research 46, 37343738.Google Scholar
Garcia, M., Lacombe, M. J., Duplay, H., Cavailles, V., Derocq, D., Delarue, J. C., Krebs, B., Contesso, G., Sancho-Garnier, H., Richer, G., Domergue, J., Namer, M. & Rochefort, H. 1987. Immunohistochemical distribution of the 52-kDa protein in mammary tumors: A marker associated with cell proliferation rather than with hormone responsiveness. Journal of Steroid Biochemistry 27, 439445.CrossRefGoogle ScholarPubMed
Goldfarb, R. H. 1986. Proteolytic enzymes in tumor invasion and degradation of host extracellular matrices. In Mechanisms of Cancer Metastasis, eds Honn, K. V., Powers, W. E. & Sloane, B. F., pp. 341375. Boston: Martinus Nijhoff.CrossRefGoogle Scholar
Hasilik, A., Von Figura, K., Conzelmann, E., Nehrkorn, H. & Sandhoff, K. 1982. Activation of cathepsin D precursor in vitro and activity of β-hexosaminidase a precursor towards ganglioside GM2. European Journal of Biochemistry 125, 317321.CrossRefGoogle ScholarPubMed
Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M. & Shafie, S. 1980. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 6768.CrossRefGoogle ScholarPubMed
Lippman, M. E., Dickson, R. B., Bates, S. Knabbe, C., Huff, K., Swain, S., McManaway, M., Bronzert, D., Kasid, A. & Gelmann, E. P. 1986. Autocrine and paracrine growth regulation of human breast cancer. Breast Cancer Research and Treatment 1, 5970.CrossRefGoogle Scholar
Lippman, M. E., Dickson, R. B., Bates, S. Knabbe, C., Huff, K., Swain, S., McManaway, M., Bronzert, D., Kasid, A. & Gelmann, E. P. 1989. Growth control of normal and malignant breast epithelium. Proceedings of the Royal Society of Edinburgh 95B, 89106.Google Scholar
Maudelonde, T., Khalaf, S., Garcia, M., Freiss, G., Duporté, J., Benatia, M., Rogier, H., Paolucci, F., Simony, J., Pujol, H., Pau, B. & Rochefort, H. 1988. Immunoenzymatic assay of Mr 52,000 cathepsin D in 182 breast cancer cytosols. Low correlation with other prognostic parameters. Cancer Research 48, 462466.Google Scholar
Maudelonde, T., Domergue, J., Henquel, C., Freiss, G., Brouillet, J. P., Francès, D., Pujol, H. & Rochefort, H. (in prep.). Tamoxifen treatment increases the concentration of 52K cathepsin D and its precursor in breast cancer tissue.Google Scholar
McGuire, W. L., Clark, G. N., Fisher, E. R. & Henderson, I. C. 187. Predicting recurrence and survival in breast cancer: A panel discussion. Breast Cancer Research and Treatment 9, 2738.CrossRefGoogle Scholar
Morgan, D. O., Edman, J. C., Standring, D. N., Fried, V. A., Smith, M. C., Roch, R. A., Rutter, W. J. 1987. Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329, 301307.CrossRefGoogle ScholarPubMed
Morisset, M., Capony, F. & Rochefort, H. 1986a. Processing and estrogen regulation of the 52-kDa protein inside MCF7 breast cancer cells. Endocrinology 119, 27732783.CrossRefGoogle Scholar
Morisset, M., Capony, F. & Rochefort, H. 1986b. The 52-kDa oestrogen-induced protein secreted by MCF7 cells is a lysosomal acidic protease. Biochemical and Biophysical Research Communications 138, 102109.CrossRefGoogle Scholar
Moulton, B. C. & Koenig, B. B. 1983. Progestin increases cathepsin D synthesis in uterine luminal epithelial cells. American Journal of Physiology 244, E442–E446.Google ScholarPubMed
Ossowski, L. & Reich, E. 1983. Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35, 611619.CrossRefGoogle ScholarPubMed
Poole, A. R. 1979. Tumour lysosomal enzymes and invasive growth. In Lysosomes in Biology and Pathology, eds Dingle, J. T. & Fell, H. B., pp. 304337. New York: American Elsevier Pub. Co.Google Scholar
Rochefort, H., Coezy, E., Joly, E., Westley, B. & Vignon, F. 1980. Hormonal control of breast cancer in cell culture. In Hormones and Cancer, eds Iacobelli, S., King, R. J. B., Lindner, H. R. & Lippman, M. E., Vol. 14, pp. 2129. New York: Raven Press.Google Scholar
Rochefort, H., Capony, F., Garcia, M., Cavailles, V., Freiss, G., Chambon, M., Morisset, M. & Vignon, F. 1987. Estrogen-induced lysosomal proteases secreted by breast cancer cells. A role in carcinogenesis. Journal of Cellular Biochemistry 35, 1729.CrossRefGoogle Scholar
Rogier, H., Freiss, G., Besse, M. G., Cavalié-Barthez, G., Garcia, M., Pau, B., Rochefort, H. & Paolucci, F. 1989. Two-site immunoenzymometric assay of the 52-kDa-cathepsin D cytosols of breast cancer tissues. Clinical Chemistry 35, 8185.CrossRefGoogle ScholarPubMed
Ryan, T. J., Seeger, J. I., Kumar, S. A. & Dickerman, H. 1984. Estradiol preferentially enhances extracellular tissue plasminogen activators of MCF7 breast cancer cells. Journal of Biological Chemistry 259, 1432414327.CrossRefGoogle Scholar
Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A. & McGuire, W. L. 1987. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177182.CrossRefGoogle ScholarPubMed
Thorpe, S., Rochefort, H., Garcia, M., Freiss, G., Christensen, I. J., Khalaf, S., Paolucci, F., Pau, B., Rasmussen, B. B. & Rose, C. (in prep.). High concentrations of 52K cathepsin D predict poor prognosis in primary, postmenopausal breast cancer (submitted for publication).Google Scholar
Troen, B. R., Gal, S. & Gottesman, M. M. 1987. Sequence and expression of the cDNA for MEP (major excreted protein), a transformation-regulated secreted cathepsin Biochemical Journal 246, 731735.CrossRefGoogle ScholarPubMed
Vignon, F., Derocq, D., Chambon, M. & Rochefort, H. 1983. Endocrinologie. Les protéines oestrogéno-induites sécrétées par les cellules mammaires cancéreuses humaines MCF7 stimulent leur prolifération. Comptes Rendus de l'Academie des Sciences, Paris 296, 151156.Google Scholar
Vignon, F., Capony, F., Chambon, M., Freiss, G., Garcia, M. & Rochefort, H. 1986. Autocrine growth stimulation of the MCF7 breast cancer cells by the estrogen-regulated 52K protein. Endocrinology 118, 15371545.CrossRefGoogle Scholar
Vignon, F., Capony, F., Chambon, M., Freiss, G., Garcia, M. & Rochefort, H. 1987. Autocrine regulation of breast cancer cell growth by oestrogen-induced secreted proteins and peptides. In Recent Advances in Steroid Hormone Action, ed. Moudgil, V. K., pp. 405425. Berlin: Walter de Gruyter & Co.CrossRefGoogle Scholar
Von Figura, K. & Hasilik, A. 1986. Lysosomal enzymes and their receptors. Annual Review of Biochemistry 55, 167193.CrossRefGoogle ScholarPubMed
Westley, B., May, F. E. B., Brown, A. M. C., Krust, A., Chambon, P., Lippman, M. E. & Rochefort, H. 1984. Effects of antioestrogens on the oestrogen regulated pS2 RNA, 52-kDa and 160-kDa protein in MCF7 cells and two tamoxifen resistant sublines. Journal of Biological Chemistry 259, 1003010035.CrossRefGoogle ScholarPubMed
Westley, B., May, F. E. B., Brown, A. M. C., Krust, A., Chambon, P., Lippman, M. E. & Rochefort, H. 1987. Oestrogen regulates cathepsin D mRNA levels in oestrogen responsive human breast cancer cells. Nucleic Acids Research 15, 37733786.CrossRefGoogle ScholarPubMed
Westley, B., May, F. E. B., Brown, A. M. C., Krust, A., Chambon, P., Lippman, M. E. & Rochefort, H. 1980. A secreted glycoprotein induced by oestrogen in human breast cancer cell lines. Cell 20, 352362.CrossRefGoogle ScholarPubMed