Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-15T06:18:05.507Z Has data issue: false hasContentIssue false

Oxygen and environmental stress in plants: and evolutionary context

Published online by Cambridge University Press:  05 December 2011

George A. F. Hendry
Affiliation:
NERC Unit of Comparative Plant Ecology, Department of Animal and Plant Sciences, The University, Sheffield S102TN, UK
Get access

Synopsis

Contemporary plant species show a wide range of responses to oxidative attack. Much of this variation may reflect the different environmental selective pressures operating at different geological periods over the course of angiosperm evolution. Evidence is provided to show that the wide range of contemporary responses to oxidative stress may directly reflect the persistence of genes controlling free radical processes under environments of the past.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apostol, I., Heinstein, P. F. & Low, P. S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiology 90, 109–16.CrossRefGoogle ScholarPubMed
Atherton, N. M., Hendry, G. A. F., Mobius, K., Rohrer, M. & Torring, J. T. 1993. A free radical ubiquitously associated with senescence in plants. Free Radical Research Communications 19, 297301.CrossRefGoogle ScholarPubMed
Badiani, M., D'Annibale, A., Paolacci, A. R., Miglietta, F. & Raschi, A. 1993. The antioxidant status of soybean (Glycine max) leaves grown under natural CO2 enrichment in the field. Australian Journal of Plant Physiology 20, 275284.Google Scholar
Baker, A. J. M., Ewart, K., Hendry, G. A. F., Thorpe, P. C. & Walker, P. 1990. The evolutionary basis of cadmium tolerance in higher plants. In Barcelo, J. (Ed.) Environmental contamination, pp 2329. Edinburgh: U.N. Environmental Programme-CEP Consultants.Google Scholar
Becana, M. & Klucas, R. V. 1992. Transition metals in legume root nodules: Iron-dependent free radical production increases during nodule senescence. Proceedings of the National Academy of Sciences USA 89, 8958–62.CrossRefGoogle ScholarPubMed
Benson, E. E., Lynch, P. T. & Jones, J. 1992. The detection of lipid peroxidation products in cryoprotected and frozen rice cells: consequences for post-thaw survival. Plant Science 85, 107–14.CrossRefGoogle Scholar
Berner, R. A. 1991. A new model for atmospheric CO2 over Phanerozoic time. American Journal of Science 291, 339376.CrossRefGoogle Scholar
Berner, R. A. & Canfield, D. E. 1989. A new model for atmospheric oxygen over Phanerozoic time. American Journal of Science 289, 333–61.CrossRefGoogle ScholarPubMed
Brown, S. B., Houghton, J. D. & Hendry, G. A. F. 1991. Chlorophyll Breakdown, In Scheer, H. (Ed.) The chlorophylls, pp. 465–89. Boca Raton, Florida: CRC Press.Google Scholar
Buckland, S. M., Price, A. H. & Hendry, G. A. F. 1991. The role of ascorbate in drought-treated Cochlearia atlantica Pobed. and Armeria maritima (Mill.) Willd. New Phytologist 119, 155–60.CrossRefGoogle ScholarPubMed
Cakmak, I. & Horst, W. J. 1991 Effects of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum 83, 463–8.CrossRefGoogle Scholar
Cakmak, I. & Marschner, H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology 98, 1222–7.CrossRefGoogle ScholarPubMed
Crawford, R. M. M. 1989. Studies in plant survival. Oxford: Blackwell.Google Scholar
Crawford, R. M. M. & Wollenweber-Ratzer, B. 1992. Influence of L-ascorbic acid on post-anoxic growth and survival of chickpea seedlings (Cicer arientum L.). Journal of Experimental Botany 43, 703–8.CrossRefGoogle Scholar
Dalton, D. A., Post, C. J. & Langeberg, L. 1991. Effects of ambient oxygen and of fixed nitrogen on concentrations of glutathione, Ascorbate and associated enzymes in soybean nodules. Plant Physiology 96, 812–18.CrossRefGoogle Scholar
De Vos, C. H. R., Schat, H., Vooijs, R. & Ernst, W. H. O. 1989. Copper-induced damage to the permiability barrier in roots of Silene cucubalis. Journal of Plant Physiology 135, 164–9.CrossRefGoogle Scholar
Droillard, M. -J., Bureau, & Paulin, A. 1989. Changes in activities of superoxide dismutases during aging of petals of cut carnations (Dianthus caryophyllus). Physiologia Plantarum 76, 149–54.CrossRefGoogle Scholar
Frakes, L. A. 1979. Climates throughout geologic time. Amsterdam: Elsevier Publishing.Google Scholar
Frakes, L. A. & Kemp, E. M. 1972. The influence of continental positions on Early Tertiary climates. Nature 240, 97199.CrossRefGoogle Scholar
Gidrol, X., Serghini, H., Noubhani, A., Mocout, B. and Mazliak, P. 1989. Biochemical changes induced by accelerated aging in sunflower seed. Lipid peroxidation and membrane damage. Physiologia Plantarum 76, 591597.CrossRefGoogle Scholar
Halliwell, B. & Gutteridge, J. M. C. 1989. Free radicals in biology and medicine, (2nd edn). Oxford: Clarendon Press.Google Scholar
Hendry, G. A. F. 1993a. Oxygen, free radical processes and seed longevity. Seed Science Research 3, 141153.CrossRefGoogle Scholar
Hendry, G. A. F. 1993b. Evolutionary origins and natural functions of fructans - a climatological, biogeographic and mechanistic appraisal. New Phytologist 123, 314.CrossRefGoogle Scholar
Hendry, G. A. F. & Brocklebank, K. J. 1985. Iron-induced oxygen radical damage in waterlogged plants. New Phytologist 101, 199206.CrossRefGoogle ScholarPubMed
Hendry, G. A. F., Houghton, J. D. and Brown, S. 1987. The degradation of chlorophyll - a biological enigma. New Phytologist 107, 255302.CrossRefGoogle ScholarPubMed
Hendry, G. A. F., Price, A. H. & Brocklebank, K. J. 1990. Role of iron in chlorophyll destruction in stressed plants. Molecular Aspects of Medicine 11, 131–5.Google Scholar
Hendry, G. A. F., Baker, A. J. M. & Ewart, C. F. 1992a. Cadmium tolerance and toxicity; oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus lanatus L. Acta Botanica Neerlandica 41, 271–81.CrossRefGoogle Scholar
Hendry, G. A. F., Finch-Savage, W. E., Thorpe, P. C., Atherton, N. M., Buckland, S. M., Nilsson, K. A. & Seel, W. A. 1992b. Free radical processes and loss of seed viability during drying in the recalcitrant species Quercus robur L. New Phytologist 122, 273–9.CrossRefGoogle ScholarPubMed
Hernandez, J. A., Corpas, F. J., Gomez, M., del Rio, L. & Sevilla, F. 1993. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum 88, 103108.CrossRefGoogle Scholar
Hickey, L. J. 1981. Land plant evidence compatible with gradual, not catastrophic, change at the end of the Cretaceous. Nature 292, 529–31.CrossRefGoogle Scholar
Landis, G. P. & Snee, L. W. 1991. Ar40/Ar39 systematics and argon diffusion in amber: implications for ancient earth atmospheres. Palaeogeography, Palaeoclimatology and Palaeoecology Global Change Section 97, 63–7.CrossRefGoogle Scholar
Leprince, O., Deltour, R., Thorpe, P. C., Atherton, M. N. & Hendry, G. A. F. 1990. The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays). New Phytologist 116, 573–80.CrossRefGoogle Scholar
Leprince, O., McKersie, B. D. & Hendry, G. A. F. 1993. The mechanisms of desiccation tolerance in developing seeds. Seed Science Research 3, 231–46.CrossRefGoogle Scholar
Marschner, H. & Cakmak, I. 1989. High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium and magnesium deficient bean Phaseolus vulgaris plants. Journal of Plant Physiology 134, 308–15.CrossRefGoogle Scholar
Mehlhorn, H., Tabner, B. J. & Wellburn, A. R. 1990. Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiologia Plantarum 79, 377–83.CrossRefGoogle Scholar
Merzlyak, M. N. 1990. Syndrome of lipid peroxidation in plants. In Quinn, P. J. & Harwood, J. L. (Eds) Plant lipid biochemistry, structure and utilization, pp. 281–8. London: Portland Press.Google Scholar
Merzlyak, M. N. & Hendry, G. A. F. 1994. Free radical metabolism, pigment degradation and lipid peroxidation in leaves during senescence. Proceedings of the Royal Society of Edinburgh 102B, 459–71.Google Scholar
Merzlyak, M. N., Hendry, G. A. F., Atherton, N. M., Zhigalova, T. V., Pavlov, V. K. & Zhitenva, O. V. 1993. Pigment destruction, lipid peroxidation and free radical formation in leaves during autumn senescence. Biokhimiya 58, 240–9.Google Scholar
Monk-Talbot, L. S., Davies, H. V., MacCaulay, M. and Forster, B. P. 1991. Superoxide dismutase and susceptibility of potato Solanum tuberosum L. tubers to calcium related disorders. Journal of Plant Physiology 137, 499501.CrossRefGoogle Scholar
Muller, J. 1981. Fossil pollen records of extant angiosperms. Botanical Review 47, 1142.CrossRefGoogle Scholar
Muzzoli, M., Chicca, M. C. & Pinamonti, S. 1994. Effect of pulsed ultrasound and ultraviolet radiation on vitamin E and olive oil. Proceedings of the Royal Society of Edinburgh 102B, 265–8.Google Scholar
Navari-Izzo, F., Quartacci, M. F. & Pinzino, C. 1992. Degradation of membrane lipid components and anti-oxidant levels in Hordeum vulgare exposed to long-term fumigation with SO2. Physiologia Plantarum 84, 73–9.CrossRefGoogle Scholar
Price, A. H. 1990. A possible role for calcium in oxidative plant stress. Free Radical Research Communications 10, 345–9.CrossRefGoogle ScholarPubMed
Price, A. H. & Hendry, G. A. F. 1991. Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell and Environment 14, 477–89.CrossRefGoogle Scholar
Ponquett, R. T., Smith, M. T. & Ross, G. 1992. Lipid autoxidation and seed ageing: putative relationships between seed longevity and lipid stability. Seed Science Research 2, 51–4.CrossRefGoogle Scholar
Pukacka, S. 1991. Changes in membrane lipid components and antioxidant levels during natural ageing of seeds of Acer platanoides. Physiologia Plantarum 82, 306–10.CrossRefGoogle Scholar
Quartacci, M. F. & Navari-Izzo, F. 1992. Water stress and free radical mediated changes in sunflower seedlings. Journal of Plant Physiology 139, 621–5.CrossRefGoogle Scholar
Raven, J. A. 1991. Plant responses to high O2 concentrations: relevance to previous high O2 episodes. Palaeogeography, Palaeoclimatology, Palaeoecology (Global Change Section) 97, 1938.CrossRefGoogle Scholar
Rea, D. K., Leinen, M. & Janecek, T. R. 1985. Geologic approach to the long-term history of atmospheric circulation. Science 227, 721–5.CrossRefGoogle Scholar
Retallack, G. 1992. Palaeosols and changes in climate and vegetation across the Eocene/Oligocene boundary. In Prothero, D. R. & Berggren, W. A. (Eds) Eocene-Oligocene climatic andbiotic evolution, pp. 382–98. New Jersey: Princeton University Press.CrossRefGoogle Scholar
del Rio, L. A., Sevilla, F., Sandalio, L. M. & Palma, J. A. 1991. Nutritional effect and expression of SODs: induction and gene expression; diagnostics; prospective protection against oxygen toxicity. Free Radical Research Communications 13, 819–27.CrossRefGoogle Scholar
Robin, E., Froget, L., Jehanno, C. & Rocchia, R. 1993. Evidence for a K/T impact even in the Pacific Ocean. Nature 363, 615–17.CrossRefGoogle Scholar
Robinson, J. M. 1989. Phanerozoic O2 variation, fire and terrestrial ecology. Palaeogeography, Palaeoclimatology, Palaeoecology Global Change Section 75, 223–40.CrossRefGoogle Scholar
Schoner, S. & Krause, G. H. 1990. Protective systems against active oxygen species in spinach: responses to cold acclimation in excess light. Planta 180, 383–89.CrossRefGoogle ScholarPubMed
Seel, W. E., Hendry, G. A. F. & Lee, J. A. 1992. The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats. Journal of Experimental Botany 43, 1023–30.CrossRefGoogle Scholar
Tallis, J. H. 1991. Plant community history. London: Chapman & Hall.Google Scholar
Wing, S. L., Hickey, L. J. & Swisher, C. C. 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature 363, 342–4.CrossRefGoogle Scholar
Wingsle, G. & Hallgren, J.-E. 1993. Influence of SO2 and NO2 exposure on glutathione, superoxide dismutase and glutathione reductase activities in Scots pine needles. Journal of Experimental Botany 44, 463–70.CrossRefGoogle Scholar