Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-13T08:56:41.188Z Has data issue: false hasContentIssue false

Physiology and biochemistry of pteridophytes

Published online by Cambridge University Press:  05 December 2011

John A. Raven
Affiliation:
Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland, U.K. Department of Environmental Biology, Research School of Biological Sciences, The Australian National University, Canberra City, A.C.T. 2601, Australia
Get access

Synopsis

The biochemical characteristics of pteridophytes firmly ally them with other Tracheophyta, with Bryophyta and with the class Charophyceae of the algal division Chlorophyta. Pteridophyte sporophytes, like the sporophytes of other terrestrial Tracheophyta, generally have the attributes of homoiohydric plants. All gametophytes are poikilohydric. Many gametophytes, and some sporophytes, are desiccation tolerant.

Quantitative comparisons between pteridophyte sporophytes and the sporophytes of other tracheophytes show that there are probably no systematic differences between the efficiency of important processes: examples are the quantum yield of photosynthesis, and the water use efficiency of organic matter accumulation, in the (mainly) C3 pteridophytes relative to other C3 tracheophytes. By contrast, the potential rales of physiological processes, as indicated by the conductance of photosynthetic (C3) carbon assimilation, and of water movement in the xylem, are generally towards the low end of the range for terrestrial tracheophytes. These low conductances restrict the maximum specific growth rate of pteridophyte sporophytes to rates lower than those found in annual angiosperms. Constraints imposed by the pteridophyte life cycle may have limited the capacity of pteridophytes to function in nature as annuals, and thus have reduced the selection pressure for high conductances (e.g. by a more widespread occurrence of vesseles in xylem of pteridophytes).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bewley, J. D. and Krochko, J. E. 1982. Desiccation-tolerance. In Encyclopedia of Plant Physiology, ed. Lange, O. L., Nobel, P. S., Osmond, C. B. and Ziegler, H., Vol. 12B, pp. 325378. Berlin: Springer.Google Scholar
Bird, I. F., Cornelius, M. J. and Keys, A. J. 1982. Affinity of ribulose bisphosphate carboxylase for carbon dioxide and inhibition of the enzymes by oxygen. J. Exp. Bot. 33, 10041013.Google Scholar
Cowan, I. R. 1982. Regulation of water use in relation to carbon gain in higher plants. Encyclopedia of Plant Physiology, ed. Lange, O. L., Nobel, P. S., Osmond, C. B. and Ziegler, H., Vol 12B, pp. 589613. Berlin: Springer.Google Scholar
Dyer, A. F. 1979. The culture of fern gametophytes for experimental investigation. In The Experimental Biology of Ferns, ed. Dyer, A. F., pp. 254305. London: Academic Press.Google Scholar
Farquhar, G. D., O'Leary, M. H. and Berry, J. A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Austr. J. Pl. Physiol. 9, 121137.Google Scholar
Friend, D. J. C. 1975. Adaptation and adjustment of photosynthetic characteristics of gametophytes and sporophytes of the Hawaiian tree-fern (Cibotium glaucum) grown at different irradiances. Photosynthetica 9, 157164.Google Scholar
Gibson, A. C., Calkin, H. W., Raphael, D. D. and Nobel, P. S. 1985. Water relations and xylem anatomy of ferns. Proc. Roy. Soc. Edinb. 86B, 8192.Google Scholar
Grime, J. P. 1979. Plant Strategies and Vegetation Processes. Chichester: John Wiley and Sons.Google Scholar
Hagar, W. G. and Freeberg, J. A. 1980. Photosynthetic rates of sporophytes and gametophytes of the fern. Todea barbara. Pl. Physiol. 65, 584586.Google Scholar
Hariri, M. and Priouhl, J. L. 1978. Light-induced adaptive responses under greenhouse and conditions in the fern Pteris cretica var. auwadii. H. Photosynthetic capacities. Physiol. Pl. 42, 97102.Google Scholar
Hatch, M. D., Slack, C. R. and Johnson, H. 1967. Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugar-cane and its occurrence in other plant species. Biochem. J. 102, 417422.CrossRefGoogle ScholarPubMed
Hohne, H. and Richter, B. 1981. Untersuchungen über der Mineralstoff- und Stickstoffgehalt von Fernkrauten. Flora 176, 110.Google Scholar
Keeley, J. E. 1982. Distribution of diurnal acid metabolism in the genus Isoetes. Am. J. Bot. 69, 254257.Google Scholar
Keeley, J. E. Osmond, C. B. and Raven, J. A. 1984. Stylites: a vascular land plant without stomata absorbs CO2 via its roots and shows CAM. Nature 310, 694695.Google Scholar
Körner, C. H., Scheel, J. A. and Bauer, H. 1979. Maximum leaf conductance for the diffusion of water vapour and carbon dioxide in 246 plant species and cultivars. Photosynthetica 13, 4582.Google Scholar
Löhr, E. and Müller, D. 1968. Blatt-atmung der hoheren Bodensplanzen im tropischen Regenunwald. Physiol. Pl. 21, 673675.CrossRefGoogle Scholar
Maeda, O. 1970. On the dry matter productivity of two ferns, Osmunda cinnamomea and Dryopteris crassirhizoma, in relation to their geographical distribution in Japan. Jap. J. Bot. 20, 237267.Google Scholar
Nobel, P. S. 1977. Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species. Physiol. Pl. 40, 137144.Google Scholar
Nobel, P. S. 1978. Microhabitat, water relations and photosynthesis in a desert fern, Notholaena parryi. Oecologia 31, 293309.CrossRefGoogle Scholar
Page, C. N. 1979. Experimental aspects of fern ecology. In The Experimental Biology of Ferns, ed. Dyer, A. F., pp. 551559. London: Academic Press.Google Scholar
Peters, G. A. and Mayne, B. C. 1974. The Azolla, Anabaena azollae relationship. I. Initial characterisation of the association. Pl. Physiol. 53, 813819.Google Scholar
Raghavendra, A. S. and Das, V. S. R. 1978. The occurrence of C4-photosynthesis: a supplementary list of C4 plants during late 1974—mid 1977. Photosynthetica 12, 200208.Google Scholar
Raven, J. A. 1977. The evolution of vascular land plants in relation to supracellular transport processes. Adv. Bot. Res. 5, 153219.Google Scholar
Raven, J. A. 1981. Introduction to metabolic control. In Mathematics and Plant Physiology, ed. Rose, D. A. and Charles-Edwards, D. A., pp. 327. London: Academic Press.Google Scholar
Raven, J. A. 1984a. Energetics and Transport in Aquatic Plants. New York: A. R. LissGoogle Scholar
Raven, J. A. 1984b. Physiological correlates of the morphology of early vascular plants. Bot. J. Linn. Soc. 88, 105126.Google Scholar
Raven, J. A. 1985. Evolution of plant life forms. In Proceedings of International Conference on Evolutionary Constraints on Primary Production: Adaptive Strategies on Energy Capture in Plants, ed. Givnish, T. J., Cambridge: University Press.Google Scholar
Raven, J. A. and Glidewell, S. M. 1981. Processes limiting photosynthetic conductance. In Physiological Processes Limiting Plant Productivity, ed. Johnson, C. B., pp. 109136. London: Butterworths.Google Scholar
Ray, T. B., Mayne, B. C., Toia, R. E. Jr. and Peters, G. A. 1979. The Azolla, Anabaena azollae relationship. VIII. Photosynthetic characterisation of the association and individual partners. Pl. Physiol. 64, 791795.Google Scholar
Richardson, K., Griffiths, H., Reed, M. L., Raven, J. A. and Griffiths, N. M. 1984. Inorganic carbon assimilation in the Isoetids, Isoetes lacustris L. and Lobelia dortmanna L. Oecologia 61, 115121.CrossRefGoogle ScholarPubMed
Schulze, E.-D. 1972. Die Wirkung von Licht und Temperatur auf den CO2-gaswechsel verscheidner Lebensformen aus der Krautschicht eines montanen Buchenwaldes. Oecologia 9, 235258.Google Scholar
Smith, B. N. and Epstein, E. 1971. Two categories of 13C/12C ratios for higher plants. Pl. Physiol. 47. 380384.Google Scholar
Sporne, K. R. 1975. The Morphology of Pteridophytes, 4th edn. London: Hutchinson.Google Scholar
Stewart, K. D. and Mattox, K. R. 1975. Comparative cytology, evolution and classification of the green alga with some consideration of the origin of other organisms with chlorophylls a and b. Bot. Rev. 41, 104135.CrossRefGoogle Scholar
Stewart, K. D. and Mattox, K. R. 1978. Structural evolution in the flagellated cells of green algae and land plants. BioSystems 10, 145152.CrossRefGoogle ScholarPubMed
Tee, K. S. and Hew, S. C. 1974. Effects of alpha-hydroxypyridine methane sulphonate on photosynthesis, photorespiration and respiration in Marsilea. Bot. Gaz. 135, 114120.Google Scholar
Troughton, J. H. 1971. Aspects of the evolution of the photosynthetic carboxylation reaction in plants. In Photosynthesis and Photorespiration, ed. Hatch, M. D., Osmond, C. B. and Slayter, R. O., pp. 124129. New York: Academic Press.Google Scholar
Winter, K., Wallace, B. J., Stocker, G. C. and Roksandic, Z. 1983. Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57, 129141.Google Scholar
Wong, S. C. and Hew, C. S. 1976. Diffusive resistance, titratable acidity, and carbon dioxide fixation in twotropical epiphytic ferns. Am. Fern J. 66, 121124.CrossRefGoogle Scholar
Woodhouse, R. M. and Nobel, P. S. 1982. Stipe anatomy, water potentials, and xylem conductances in seven species of ferns (Filicopsida). Am. J. Bot. 69, 135140.Google Scholar
Wylie, R. B. 1948. The dominant role of the epidermis in leaves of Adiantum. Am. J. Bot. 35, 465473.Google Scholar
Yeoh, H-H., Badger, M. R. and Watson, L. 1981. Variations in kinetic properties of ribulose-1, 5- bisphosphate carboxylase among plants. Pl. Physiol. 67, 11511155.CrossRefGoogle ScholarPubMed