Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T09:46:55.015Z Has data issue: false hasContentIssue false

Polyamine amide toxins as pharmacological tools and pharmaceutical agents

Published online by Cambridge University Press:  05 December 2011

Ian S. Blagbrough
Affiliation:
School of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
Peter N. R. Usherwood
Affiliation:
Department of Life Science, School of Biological Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
Get access

Synopsis:

The polyamine amides comprise a newly-discovered class of compounds which exhibits considerable potential for the development of selective pharmacological tools and pharmaceutical agents. In mammals and other vertebrates, they are selective, non-competitive antagonists of ionotropic glutamate receptors, but they also interact with other ionotropic receptors (e.g. nicotinic acetylcholine receptors). Thus, they are channel blockers which are selective for cation channels. We report on synthetic studies undertaken to produce hybrid analogues of these toxins based upon the argiotoxins of spider venoms and the philanthotoxins of parasitic, predatory wasp venom. The synthesis and characterisation of a mono-acylated spermine is also described. In addition, an account of current views on the many possible sites and modes of actions of the polyamine amides is presented and their potential for therapeutic neurochemistry, e.g. for the possible treatment of ischaemic damage to the nervous system, is highlighted.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T., Kawai, N. & Miwa, A. 1983. Effects of a spider toxin on the glutaminergic synapse of lobster muscle. Journal of Physiology (London) 339, 243–52.CrossRefGoogle ScholarPubMed
Adams, M. E. 1988. Synaptic ion channel toxins from spider venoms. In Neurotox 88: molecular basis of drug and pesticide action, pp. 4960, ed. Lunt, G. G. Amsterdam: Elsevier.Google Scholar
Adams, M. E., Carney, R. L., Enderlin, F. E., Fu, E. T., Jarema, M. A., Li, J. P., Miller, C. A., Schooley, D. A., Shapiro, M. J. & Venema, V. J. 1987. Structures and biological activities of three synaptic antagonists from orb weaver spider venom. Biochemical Biophysical Research Communications 148, 678–83.CrossRefGoogle ScholarPubMed
Anis, N., Sherby, S., Goodnow, R., Niwa, M., Konno, K., Kallimopoulos, T., Bukownik, R., Nakanishi, K., Usherwood, P., Eldefrawi, A. & Eldefrawi, M. 1990. Structure-activity relationships of philanthotoxin analogs and polyamines on N-methyl-D-aspartate and nicotinic acetylcholine receptors. Journal of Pharmacology and Experimental Therapeutics 254, 764–73.Google ScholarPubMed
Aramaki, Y., Yasuhara, T., Higashijima, T., Yoshioka, M., Miwa, A., Kawai, N. & Nakajima, T. 1986. Chemical characterization of spider toxin, JSTX and NSTX. Proceedings of the Japanese Academy of Science 62(B), 359–62.CrossRefGoogle Scholar
Asami, T., Kagechika, H., Hashimoto, Y., Shudo, K., Miwa, A., Kawai, N. & Nakajima, T. 1989. Acylpolyamines mimic the action of Joro spider toxin (JSTX) on crustacean glutamate receptors. Biochemical Research 10, 185–9.Google Scholar
Bateman, A., Boden, P., Dell, A., Duce, I. R., Quicke, D. L. J. & Usherwood, P. N. R. 1985. Postsynaptic block of a glutamatergic synapse by low molecular weight fractions of spider venom. Brain Research 339, 237–44.CrossRefGoogle ScholarPubMed
Blagbrough, I. S. & Usherwood, P. N. R. 1990. Mode of action of polyamine-derived glutamate antagonists. Pesticide Science 30, 451–3.Google Scholar
Blagbrough, I. S., Bycroft, B. W., Mather, A. J. & Usherwood, P. N. R. 1989a. Philanthotoxin-343 - an analogue of a toxin from Philanthus triangulum: a practical synthesis of a potent glutamate antagonist. Journal of Pharmacy and Pharmacology 41, Suppl. 95P.Google Scholar
Blagbrough, I. S., Bycroft, B. W., Mather, A. J. & Usherwood, P. N. R. 1989b. Low molecular weight spider venom toxins isolated from Argiope and Araneus: potent antagonists of glutamatergic transmission. Journal of Pharmacy and Pharmacology 41, Suppl. 96P.Google Scholar
Blagbrough, I. S., Bruce, M., Bycroft, B. W., Mather, A. J. & Usherwood, P. N. R. 1990. Invertebrate pharmacological assay of novel, potent glutamate receptor antagonists: acylated spermines. Pesticide Science 30, 397403.CrossRefGoogle Scholar
Blagbrough, I. S., Brackley, P. T. H., Bruce, M., Bycroft, B. W., Mather, A. J., Millington, S., Sudan, H. L. & Usherwood, P. N. R. 1992. Arthropod toxins as leads for novel insecticides: an assessment of polyamine amides as glutamate antagonists. Toxicon 30, 303–22.CrossRefGoogle ScholarPubMed
Brackley, P., Goodnow, R., Nakanishi, K., Sudan, H. L. & Usherwood, P. N. R. 1990. Spermine and philanthotoxin potentiate excitatory amino acid responses of Xenopus oocytes injected with rat and chick brain RNA. Neuroscience Letters 114, 51–6.CrossRefGoogle ScholarPubMed
Bruce, M., Bukownik, R., Eldefrawi, A. T., Eldefrawi, M. E., Goodnow, R., Kallimopoulos, T., Konno, K., Nakanishi, K., Niwa, M. & Usherwood, P. N. R. 1990. Structure-activity relationships of analogues of the wasp toxin philanthotoxin: non-competitive antagonists of quisqualate receptors. Toxicon 28, 1333–46.CrossRefGoogle ScholarPubMed
Brundell, P., Goodnow, R., Kerry, C. J., Nakanishi, K., Sudan, H. L. & Usherwood, P. N. R. 1991. Quisqualate-sensitive glutamate receptors of the locust Schistocerca gregaria are antagonised by intracellularly applied philanthotoxin and spermine. Neuroscience Letters 131, 196200.CrossRefGoogle ScholarPubMed
Budd, T., Clinton, P., Dell, A., Duce, I. R., Johnson, S. J., Quicke, D. L. J., Taylor, G. W., Usherwood, P. N. R. & Usoh, G. 1988. Isolation and characterisation of glutamate receptor antagonists from venoms of orb-web spiders. Brain Research 448, 30–9.CrossRefGoogle ScholarPubMed
Collingridge, G. L. & Bliss, T. V. P. 1987. NMDA receptors, their role in long-term potentiation. Trends in Neurosciences 10, 288–93.CrossRefGoogle Scholar
Collingridge, G. L. & Lester, R. A. J. 1989. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacological Reviews 41, 143210.Google ScholarPubMed
Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I. & Heinemann, S. 1991. Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not by AMPA. Nature 351, 745–8.CrossRefGoogle Scholar
Eldefrawi, A. T., Eldefrawi, M. E., Konno, K., Mansour, N. A., Nakanishi, K., Oltz, E. & Usherwood, P. N. R. 1988. Structure and synthesis of a potent glutamate receptor antagonist in wasp venom. Proceedings of the National Academy of Science, USA 85, 4910–13.CrossRefGoogle Scholar
Evans, H. E. & O'Neill, K. M. 1991. Beewolves. Scientific American 265, 5662.CrossRefGoogle Scholar
Goodnow, R., Konno, K., Niwa, M., Kallimopoulos, T., Bukownik, R., Lenares, D. & Nakanishi, K. 1990. Synthesis of glutamate receptor antagonist philanthotoxin-433 (PhTX-433) and its analogs. Tetrahedron 46, 3267–86.CrossRefGoogle Scholar
Goodnow, R., Nakanishi, K., Sudan, H. L. & Usherwood, P. N. R. 1991. Inactivation of a quisqualate-sensitive glutamate receptor by photosensitive analogues of philanthotoxin. Neuroscience Letters 125, 62–4.CrossRefGoogle ScholarPubMed
Gordonsmith, R. H., Brooke-Taylor, S., Smith, L. L. & Cohen, G. M. 1983. Structural requirements of compounds to inhibit pulmonary diamine accumulation. Biochemical Pharmacology 32, 3701–9.CrossRefGoogle ScholarPubMed
Gordonsmith, R. H., Smith, L. L. & Cohen, G. M. 1985. Pulmonary accumulation of methylglyoxal-bis(guanylhydrazone) by the oligoamine uptake system. Biochemical Pharmacology 34, 1809–16.CrossRefGoogle ScholarPubMed
Greenamyre, J. T., Penney, J. B., Young, A. B., D'Amato, C. J., Hicks, S. P. & Shoulson, I. 1985. Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases. Science 227, 1496–9.CrossRefGoogle ScholarPubMed
Greenamyre, J. T., Penney, J. B., D'Amato, C. J. & Young, A. B. 1987. Dementia of the Alzheimer's type: changes in hippocampal L-3 H-glutamate binding. Journal of Neurochemistry 48, 543–51.CrossRefGoogle Scholar
Grishin, E. V., Volkova, T. M., Arseniev, A. S., Reshetova, O. S., Onoprienko, V. V., Magazanik, L. G., Antonov, S. M. & Fedorova, I. M. 1986. Structure-functional characterization of argiopine - an ion channel blocker from the venom of the spider Argiope lobata. Bioorganicheskaya Khimiya 12, 1121–4 (Chemical Abstracts 105, 186106d).Google Scholar
Grishin, E. V., Volkova, T. M., Arseniev, A. S., Reshetova, O. S., Onoprienko, V. V., Magazanik, L. G., Antonov, S. M. & Fedorova, I. M. 1988. Antagonists of glutamate receptors from the venom of Argiope lobata spider. Bioorganicheskaya Khimiya 14, 883–92 (Chemical Abstracts 109, 208561k).Google ScholarPubMed
Grishin, E. V., Volkova, T. M., Arseniev, A. S., Reshetova, O. S., Onoprienko, V. V., Magazanik, L. G., Antonov, S. M. & Fedorova, I. M. 1989. Isolation and structure analysis of components from the venom of the spider Argiope lobata. Toxicon 27, 541–9.CrossRefGoogle ScholarPubMed
Harvey, A. 1992. From venom to toxin to drug? Proceedings of the Royal Society of Edinburgh 99B, 5564.Google Scholar
Hashimoto, Y., Endo, Y., Shudo, K., Aramaki, Y., Kawai, N. & Nakajima, T. 1987. Synthesis of spider toxin (JSTX-3) and its analogs. Tetrahedron Letters 28, 3511–14.CrossRefGoogle Scholar
Hille, B. 1984. Ionic channels of excitable membranes. Sunderland, Mass: Sinauer Associates Inc.Google Scholar
Himi, T. & Saito, H. 1990. Joro spider toxin (JSTX-3) and its analogue, 1-naphthylacetylspermine (NpAc), inhibit glutamate toxicity on mice brain in vivo and in vitro. European Journal of Pharmacology 183, 474.CrossRefGoogle Scholar
Imoto, K., Busch, C., Sakmann, B., Mashina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K. & Numa, S. 1988. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–8.CrossRefGoogle ScholarPubMed
Jackson, H. & Usherwood, P. N. R. 1988. Spider toxins as tools for dissecting elements of excitatory amino acid transmission. Trends in Neurosciences 11, 278–83.CrossRefGoogle ScholarPubMed
Jasys, V. J., Kelbaugh, P. R., Nason, D. M., Phillips, D., Saccomano, N. A. & Volkmann, R. A. 1988. The total synthesis of argiotoxins 636, 659 and 673. Tetrahedron Letters 29, 6223–26.CrossRefGoogle Scholar
Jasys, V. J., Kelbaugh, P. R., Nason, D. M., Phillips, D., Saccomano, N. A. & Volkmann, R. A. 1990. The Agelenopsis aperta venoms. Journal of the American Chemical Society 109, 6223–6.Google Scholar
Karst, H. & Piek, T. 1991. Structure-activity relationship of philanthotoxins-II. Effects on the glutamate gated ion channels of the locust muscle fibre membrane. Comparative Biochemistry and Physiology 98C, 479–89.Google Scholar
Kawai, N., Miwa, A., Hashimoto, Y., Shudo, K., Asami, T. & Nakajima, T. 1989. Zinc ion enhances the blocking potency of synthetic analogs of spider toxin (JSTX) on the glutamate receptor. Neuroscience Research 6, 358–62.CrossRefGoogle ScholarPubMed
Kerry, C. J., Ramsey, R. L., Sansom, M. S. P. & Usherwood, P. N. R. 1988. Single channel studies of non-competitive antagonism of a quisqualate-sensitive glutamate receptor by argiotoxin-636 - a fraction isolated from orb-web spider venom. Brain Research 459, 312–27.CrossRefGoogle ScholarPubMed
Krogsgaard-Larsen, P., Ferkany, J. W., Nielsen, E. O., Madsen, U., Ebert, B., Johansen, J. S., Diemer, N. H., Bruhn, T., Beattie, D. T. & Curtis, D. R. 1991. Novel class of amino acid antagonists at non-N-methyl-D-aspartic acid excitatory amino acid receptors. Synthesis, in vitro and in vivo pharmacology, and neuroprotection. Journal of Medicinal Chemistry 34, 123–30.CrossRefGoogle ScholarPubMed
Kroona, H. B., Peterson, N. L., Koerner, J. F. & Johnson, R. L. 1991. Synthesis of the 2-amino-4- phosphonobutanoic acid analogues (E)- and (Z)-2-amino-2,3-methano-4-phosphonobutanoic acid and their evaluation as inhibitors of hippocampal excitatory neurotransmission. Journal of Medicinal Chemistry 34, 1692–9.CrossRefGoogle ScholarPubMed
Kumar, K. N., Tilakaratne, N., Johnson, P. S., Allen, A. E. & Michaelis, E. K. 1991. Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex. Nature 354, 70–3.CrossRefGoogle ScholarPubMed
Leeson, P. D., Baker, R., Carling, R. W., Curtis, N. R., Moore, K. W., Williams, B. J., Foster, A. C., Donald, A. E., Kemp, J. A. & Marshall, G. R. 1991. Kynurenic acid derivatives. Structure-activity relationships for excitatory amino acid antagonism and identification of potent and selective antagonists at the glycine site on the N-methyl-D-aspartate receptor. Journal of Medicinal Chemistry 34, 1243–52.CrossRefGoogle ScholarPubMed
Lodge, D. 1988. ed. Excitatory amino acids in health and disease. Chichester: John Wiley and Sons.Google Scholar
Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R. & Nakanishi, S. 1991. Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–5.CrossRefGoogle ScholarPubMed
Monaghan, D. R., Bridges, R. J. & Cotman, C. W. 1989. The excitatory amino acid receptors. Annual Reviews in Pharmacology and Toxicology 29, 365402.CrossRefGoogle ScholarPubMed
Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N. & Nakanishi, S. 1991. Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31–7.CrossRefGoogle ScholarPubMed
Nakanishi, K., Goodnow, R., Konno, K., Niwa, M., Bukownik, R., Kallimopoulios, T. A., Usherwood, P., Eldefrawi, A. T. & Eldefrawi, M. E. 1990. Philanthotoxin-433 (PhTX-433), a non-competitive glutamate receptor inhibitor. Pure and Applied Chemistry 62, 1223–30.CrossRefGoogle Scholar
Nason, D. M., Jasys, V. J., Kelbaugh, P. R., Phillips, D., Saccomano, N. A. & Volkmann, R. A. 1989. Synthesis of neurotoxic Nephila spider venoms: NSTX-3 and JSTX-3. Tetrahedron Letters 30, 2337–40.CrossRefGoogle Scholar
Ornstein, P. L., Schoepp, D. D., Arnold, M. B., Leander, J. D., Lodge, D., Paschal, J. W. & Elzey, T. 1991. 4-(Tetrazolyalkyl)piperidine-2-carboxylic acids. Potent and selective N-methyl-D-aspartic acid receptor antagonists with a short duration of action. Journal of Medicinal Chemistry 34, 90–7.CrossRefGoogle Scholar
Piek, T., Fokkens, R. H., Karst, H., Kruk, C., Lind, A., van Marle, J., Nakajima, T., Nibbering, N. M. M., Shinozaki, H., Spanjer, W. & Tong, Y. C. 1988. Polyamine like toxins - a new class of pesticide? In Neurotox '88: molecular basis of drug and pesticide action, pp. 6176, ed. Lunt, G. G. Amsterdam: Elsevier.Google Scholar
Priestley, T., Woodruff, G. N. & Kemp, J. A. 1989. Antagonism of response to excitatory amino acids on rat cortical neurones by the spider toxin, argiotoxin-636. British Journal of Pharmacology 97, 1315–23.CrossRefGoogle Scholar
Quicke, D. L. J. & Usherwood, P. N. R. 1990. Spider toxins as lead structures for novel pesticides. In Safer insecticides: development and use. Drug and Chemical Toxicology, Vol. 7, pp. 385452, eds Hodgson, E. & Kuhr, R. J. New York: Marcel Dekker.Google Scholar
Quistad, G. B., Suwanrumpha, S., Jarema, M. A., Shapiro, M. J., Skinner, W. S., Jamieson, G. C., Lui, A. & Fu, E. W. 1990. Structures of paralytic acylpolyamines from the spider Agelenopsis aperta. Biochemical Biophysical Research Communications 169, 51–6.CrossRefGoogle ScholarPubMed
Ransom, R. W. & Stec, N. L. 1988. Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. Journal of Neurochemistry 51, 830–6.CrossRefGoogle Scholar
Reynolds, I. J. 1990. Arcaine is a competitive antagonist of the polyamine site on the NMDA receptor. European Journal of Pharmacology 177, 215–16.CrossRefGoogle ScholarPubMed
Reynolds, I. J. 1991. The spider toxin, argiotoxin-636, binds to a Mg2+ site on the N-methyl-D-aspartate receptor complex. British Journal of Pharmacology 103, 1373–6.CrossRefGoogle ScholarPubMed
Robinson, N. L. 1980. Neuromuscular blockade by polyamines at the bodywall muscles of the third instar larvae of the sheepfly, Lucilia sericata. In Insect neurobiology and pesticide action (Neurotox '79), pp. 237–8. London: Society of Chemical Industry.Google Scholar
Rosenthal, L. & Meldolesi, J. 1989. a-Latrotoxin and related toxins. Pharmacology and Therapeutics 42, 115–34.CrossRefGoogle Scholar
Saccomano, N. A., Volkmann, R. A., Jackson, H. & Parks, T. N. 1989. Polyamine spider toxins: unique pharmacological tools. Annual Reports in Medicinal Chemistry 24, 287–93.CrossRefGoogle Scholar
Schaeffer, J. M., Ruiz-Sanchez, J., Shih, T. L. & Mrozik, H. 1989. Argiopine differentiates between vertebrate and invertebrate glutamate binding sites. Pesticide Biochemistry and Physiology 35, 2632.CrossRefGoogle Scholar
Seymour, P. A. & Mena, E. E. 1989. In vivo NMDA antagonist activity of the polyamine spider venom component, argiotoxin-636. Proceedings American Society Neuroscience P463.24.Google Scholar
Shih, T. L., Ruiz-Sanchez, J. & Mrozik, H. 1987. The total synthesis of argiopine (argiotoxin-636). Tetrahedron Letters 28, 6015–18.CrossRefGoogle Scholar
Skinner, W. S., Adams, M. E., Quistad, G. B., Kataoka, H., Cesarin, B. J., Enderlin, F. E. & Schooley, D. A. 1989. Purification and characterization of two classes of neurotoxins from the funnel web spider, Agelenopsis aperta. Journal of Biological Chemistry 264, 2150–5.CrossRefGoogle ScholarPubMed
Skinner, W. S., Dennis, P. A., Lui, A., Carney, R. L. & Quistad, G. B. 1990. Chemical characterization of acylpolyamine toxins from venom of a trap-door spider and two tarantulas. Toxicon 28, 541–6.CrossRefGoogle ScholarPubMed
Teshima, T., Wakamiya, T., Aramaki, Y., Nakajima, T., Kawai, N. & Shiba, T. 1987. Synthesis of a new neurotoxin NSTX-3 of Papua New Guinean spider. Tetrahedron Letters 28, 3509–10.CrossRefGoogle Scholar
Teshima, T., Matsumoto, T., Wakamiya, T., Shiba, T., Nakajima, T. & Kawai, N. 1990a. Structure-activity relationship of NSTX-3, spider toxin of Nephila maculata. Tetrahedron 46, 3813–18.CrossRefGoogle Scholar
Teshima, T., Matsumoto, T., Miyagawa, M., Wakamiya, T., Shiba, T., Narai, N. & Yoshioka, M. 1990b. Total synthesis of clavamine, insecticidally active compound from venom of Joro spider (Nephila clavata). Tetrahedron 46, 3819–21.CrossRefGoogle Scholar
Teshima, T., Matsumoto, T., Wakamiya, T., Shiba, T., Aramaki, Y., Nakajima, T. & Kawai, N. 1991. Total synthesis of NSTX-3, spider toxin of Nephila maculata. Tetrahedron 47, 3305–12.CrossRefGoogle Scholar
Toki, T., Yasuhara, T., Aramaki, Y., Osawa, K., Miwa, A., Kawai, N. & Nakajima, T. 1988. Isolation and chemical characterization of a series of new spider toxin (nephilatoxins) in the venom of Joro spider, Nephila clavata. Biochemical Research 9, 421–8.Google Scholar
Usherwood, P. N. R. 1987a. Non-competitive antagonism of glutamate receptors. In Sites of action for neurotoxic pesticides, pp. 298315, eds, Hollingworth, R. M. & Green, M. B. Washington, D. C.: American Chemical Society.CrossRefGoogle Scholar
Usherwood, P. N. R. 1987b. Interactions of spider toxins with arthropod and mammalian glutamate receptors. In Neurotoxins and their pharmacological implications, pp. 131–51, ed. Jenner, P. New York: Raven Press.Google Scholar
Usherwood, P. N. R. 1988. Comments on the action of polyamine spider toxins on insects with particular reference to argiotoxin-636. In Neurotox '88: molecular basis of drug and pesticide action, pp. 383–92, ed. Lunt, G. G. Amsterdam: Elsevier.Google Scholar
Usherwood, P. N. R. 1989. Channel kinetics and noncompetitive antagonism of a locust muscle glutamate receptor. In Allosteric modulation of amino acid receptors: therapeutic implications, pp. 233–48, eds Barnard, E. A. & Costa, E. New York: Raven Press.Google Scholar
Usherwood, P. N. R. 1991. Polyamine toxins - selective glutamate receptor antagonists? In Probes for neurochemical target sites, pp. 99111, eds Tipton, K. F. & Iversen, L. L. Dublin: Royal Irish Academy.Google Scholar
Usherwood, P. N. R. & Blagbrough, I. S. 1989a. Amino acid synapses and receptors. In Progress and prospects in insect control, pp. 4558, ed. McFarlane, N. R., British Crop Protection Monograph No. 43, Farnham: British Crop Protection Council.Google Scholar
Usherwood, P. N. R. & Blagbrough, I. S. 1989b. Antagonism of insect muscle glutamate receptors - with particular reference to arthropod toxins. In Insecticide action: from molecule to organism, pp. 1331, eds Narahashi, T. & Chambers, J. E., New York: Plenum Press.CrossRefGoogle Scholar
Usherwood, P. N. R. & Blagbrough, I. S. 1991. Spider toxins affecting glutamate receptors: polyamines in therapeutic neurochemistry. Pharmacology and Therapeutics 52, 245–68.CrossRefGoogle ScholarPubMed
Usherwood, P. N. R. & Machili, P. 1968. Pharmacological properties of excitatory neuromuscular synapses in the locust. Journal of Experimental Biology 49, 341–61.CrossRefGoogle Scholar
Usherwood, P. N. R., Duce, I. R. & Boden, P. 1984. Slowly-reversible block of glutamate receptor-channels by venoms of the spiders, Argiope trifasciata and Araneus gemma. Journal de Physiologie 79, 241–45.Google ScholarPubMed
Usherwood, P. N. R., Sudan, H., Standley, C., Blagbrough, I. S., Bycroft, B. W. & Mather, A. J. 1990. Mechanisms of neurotoxicity of low molecular weight spider toxins. In Basic science in toxicology, pp. 569–79, eds Volans, G. N., Sims, J., Sullivan, F. M. & Turner, P. London: Taylor and Francis.Google Scholar
Usherwood, P. N. R., Blagbrough, I. S., Brackley, P. T. H., Kerry, C. J., Sudan, H. L. & Nakanishi, K. 1992. Polyamines and polyamine-containing toxins – modulators and antagonists of excitatory amino acid receptors. In Neuroreceptors, channels and brain – function, molecular biology and toxicology, ed. Kawai, N. Springer Verlag, in press.Google Scholar
Watkins, J. C. & Evans, R. H. 1981. Excitatory amino acid transmitters. Annual Reviews in Pharmacology and Toxicology 21, 165204.CrossRefGoogle ScholarPubMed
Werner, P., Voigt, M., Keinanen, K., Wisden, W. & Seeburg, P. H. 1991. Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351, 742–4.CrossRefGoogle ScholarPubMed
Westphalen, R. I. & Dodd, P. R. 1991. Excitatory amino acid neurotoxicity: a model of its involvement in Alzeheimer disease. Amino Acids 1, 132.Google Scholar
Yelin, E. A., de Macedo, B. F., Onoprienko, V. V., Osokina, N. E. & Tikhomirova, O. B. 1988. Synthesis of argiopin. Bioorganicheskaya Khimiya 14, 704–6.Google Scholar
Yoshioka, M., Narai, N., Pan-Hou, H., Shimazaki, K., Miwa, A. & Kawai, N. 1988. Color development upon reaction of ferric ion with the toxin JSTX, a glutamate receptor blocker present in the venom gland of the spider Nephila clavata (Joro spider). Toxicon 26, 414–16.CrossRefGoogle ScholarPubMed
Young, A. B., Greenamyre, J. T., Hollingsworth, Z., Albin, R., D'Amato, C., Shoulson, I. & Penney, J. B. 1988. NMDA receptor losses in putamen from patients with Huntington's disease. Science 241, 981–3.CrossRefGoogle ScholarPubMed
Zivin, J. A. & Choi, D. W. 1991. Stroke therapy. Scientific American 265, 3643.CrossRefGoogle ScholarPubMed