Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T16:30:18.277Z Has data issue: false hasContentIssue false

A view of disturbance and life strategies in fungi

Published online by Cambridge University Press:  05 December 2011

G. J. F. Pugh
Affiliation:
School of Biological Sciences, Portsmouth Polytechnic, King Henry I Street, Portsmouth PO1 2DY, U.K.
Lynne Boddy
Affiliation:
Department of Microbiology, University College, Newport Road, Cardiff CF2 1TA, U.K.
Get access

Synopsis

Examination of fungal life strategies assists the understanding of the patterns of occurrence of an organism (or rather species) in nature. Fungi prevalent in disturbed situations tend to have many R-selected characteristics, although these are often combined with C-selected and S-selected characteristics depending upon the biotic and abiotic conditions to which their life strategies are best adapted. Many fungi probably exhibit different life strategies at different times during their life-cycle.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. F., 1988. Re-establishment of VA mycorrhizas following severe disturbance: comparative patch dynamics of a shrub desert and a sub-alpine volcano. Proceedings of the Royal Society of Edinburgh 94B, 6371.Google Scholar
Andrews, J. H., 1984a. Relevance of r- and K- theory to the ecology of plant pathogens. In Current Perspectives in Microbial Ecology, ed. Klung, M. J., & Reddy, C. A., pp. 17. Washington D.C.: American Society for Microbiology.Google Scholar
Andrews, J. H., 1984b. Life history strategies of plant parasites. Advances in Plant Pathology 2, 105130.Google Scholar
Andrews, J. H., & Rouse, D. I., 1982. Plant pathogens and the theory of r- and K-selection. American Naturalist 120, 283296.CrossRefGoogle Scholar
Boddy, L., Bardsley, D. W., & Gibbon, O. M., 1987. Fungal communities in attached ash branches. New Phytologist 107, 143154.CrossRefGoogle Scholar
Boddy, L., & Rayner, A. D. M., 1983a. Mycelial interactions, morphogenesis and ecology of Phlebia radiata and Phlebia rufa from oak. Transactions of the British Mycological Society 80, 437448.CrossRefGoogle Scholar
Boddy, L., & Rayner, A. D. M., 1983b. Ecological roles of basidiomycetes forming decay communities in attached oak branches. New Phytologist 93, 177188.CrossRefGoogle Scholar
Boddy, L., & Rayner, A. D. M., 1984. Internal spread of fungi inoculated into attached oak branches. New Philologist 98, 155164.CrossRefGoogle Scholar
Boisson, C., 1968. Mise en evidence de deux phases myceliennes successives an cours du développment du Leptoporus lignosus (K1.) Heim. Comptes Rendus de l'Académie des Sciences Paris, Série D 266, 112115.Google Scholar
Bowen, R. M., & Harper, S. H. T., 1988. A comparison of fungal communities in straw decomposing in different soil types and under different cultivation practices. Proceedings of the Royal Society of Edinburgh 94B, 127133.Google Scholar
Bravo-Velasquez, E., & Hedger, J. N., 1988. The effect of ecological disturbance on competition between Crinipellis perniciosa and other tropical fungi. Proceedings of the Royal Society of Edinburgh 94B, 159166.Google Scholar
Carpenter, S. E., Harmon, M. E., Ingham, E. R., Kelsey, R. G., Lattin, J. D., & Schowalter, T. D., 1988. Early patterns of heterotroph activity in conifer logs. Proceedings of the Royal Society of Edinburgh 94B, 3343.Google Scholar
Chamier, A. C., 1988. Microbial degradation of leaf litter in freshwater streams — effect of low pH. Proceedings of the Royal Society of Edinburgh 94B, 000–000.Google Scholar
Chang, Y., & Hudson, H. J., 1967. The fungi of wheat straw compost. 1. Ecological studies. Transactions of the British Mycological Society 50, 649666.CrossRefGoogle Scholar
Chapela, I. H., & Boddy, L., in press. Fungal colonisation of attached beech branches. II. Spatial and temporal organisation of communities arising from latent invaders in bark and functional sapwood, under different moisture regimes. New Phytologist (in press).Google Scholar
Coates, D., & Rayner, A. D. M., 1985a. Fungal population and community development in beech logs. I., Establishment via the aerial cut surface. New Phytologist 101, 153171.CrossRefGoogle ScholarPubMed
Coats, D., & Rayner, A. D. M., 1985b. Fungal population and community development in beech logs. II. Establishment via the buried cut surface. New Phytologist 101, 173181.CrossRefGoogle Scholar
Coats, D., & Rayner, A. D. M., 1985c. Fungal population and community development in beech logs. III. Spatial dynamics, interactions and strategies. New Phytologist 101, 183198.CrossRefGoogle Scholar
Cooke, R. C., Safar, H. O., & Wood, S. N., 1988. The coprome: another model system — abstract. Proceedings of the Royal Society of Edinburgh 94B, 47.Google Scholar
Cooke, R. C., & Rayner, A. D. M., 1984. Ecology of Saprotrophic Fungi. London, New York: Longman.Google Scholar
Dowson, C. G., Rayner, A. D. M., & Boddy, L., 1988. The form and outcome of mycelial interactions involving cord-forming decomposer basidiomycetes in homogenous and heterogenous environments. New Phytologist 109, 423432.CrossRefGoogle Scholar
Frankland, J. C., 1975. Fungal decomposition of leaf litter in a deciduous woodland. In Biodegradation et Humification, eds. Kilbertus, G., Reisinger, O., Mourey, A., & Cancella da Fouseca, J. A., pp. 3340. Nancy: Pierron.Google Scholar
Geiger, J. P., Nandris, P., & Goujon, M., 1976. Activité des laccases et des peroxydases au sein de vacines d'Hévéa attaquées par le pourridié blanc (Leptoporus lignosus (Kl.) Heim). Physiologic Végélale 14, 271282.Google Scholar
Grime, J. P., 1979. Plant Strategies and Vegetation Processes. Chichester: J. Wiley.Google Scholar
Henriksson, E., & Henriksson, L. E., 1988. Fungi in Surtsey soils (abstract). Proceedings of the Royal Society of Edinburgh 94B, 61.Google Scholar
Killham, K., Sinclair, A. H., & Allison, M. F., 1988. Effect of straw addition on composition and activity of soil microbial biomass. Proceedings of the Royal Society of Edinburgh 94B, 135143.Google Scholar
Kirby, J. J. H., & Rayner, A. D. M., 1988. Disturbance, decomposition and patchiness in thatch. Proceedings of the Royal Society of Edinburgh 94B, 145153.Google Scholar
Lacey, J., 1988. Grain storage: the management of ecological change (abstract). Proceedings of the Royal Society of Edinburgh 94B, 155157.Google Scholar
MacArthur, R. H., & Wilson, E. O., 1967. The theory of island biogeography. Monographs in Population Biology 1. Princeton, N. J.: Princeton University Press.Google Scholar
Magan, N., 1988. Patterns of fungal colonisation of cereal straw in soil. Proceedings of the Royal Society of Edinburgh 94B, 119126.Google Scholar
Mercer, P. C., 1982. Basidiomycete decay of standing trees. In Decomposer Basidiomycetes: their Biology and Ecology, eds. Frankland, J. C., Hedger, J. N., & Swift, M. J., pp. 143160. Cambridge: Cambridge University Press.Google Scholar
Pugh, G. J. F., 1964. Dispersal of Arthroderma curreyi by birds, and its role in the soil. Sabouraudia 3, 275278.CrossRefGoogle ScholarPubMed
Pugh, G. J. F., 1980. Strategies in fungal ecology. Transactions of the British Mycological Society 75, 114.CrossRefGoogle Scholar
Pugh, G. J. F., & Buckley, N. G., 1971. The leaf surface as a substrate for colonisation by fungi. In Ecology of Leaf Surface Micro-organisms, eds. Preece, T. F., & Dickinson, C. H., pp. 431445. London: Academic Press.Google Scholar
Pugh, G. J. F., & Jones, E. B. G., 1986. Antarctic marine fungi: a preliminary account. In The Biology of Marine Fungi, ed. Moss, S. T., pp. 321330. Cambridge: Cambridge University Press.Google Scholar
Rayner, A. D. M., Boddy, L., & Dowson, C. G., 1987a. Genetic interactions and developmental versatility during establishment of decomposer basidiomycetes in wood and tree litter. In S. G. M. Symposium 41, Ecology of Mkrobial Communities, eds. Fletcher, M., Gray, T. R. G., & Jones, J. G., pp. 83123. Cambridge: Cambridge University Press.Google Scholar
Rayner, A. D. M., Brasier, C. M., & Moore, D., (eds.) 1987b. Evolutionary Biology of Fungi. Cambridge: Cambridge University Press.Google Scholar
Sewell, G. W. F., 1981. Soil-borne fungal pathogens in natural vegetation and weeds of cultivation. In Pests, Pathogens and Vegetation: the role of weeds and wild plants in the ecology of crop pests and diseases, ed. Thresh, J. M., pp. 175190. London: Pitman.Google Scholar
Shigo, A. L., 1972. Succession of microorganisms and patterns of discoloration and decay after wounding in red oak and white oak. Phytopathology 62, 256259.CrossRefGoogle Scholar
Shigo, A. L., 1979. Tree decay - an expanded concept. U. S. Department of Agriculture. Forest Information Bulletin 419.Google Scholar
Shortle, W. C., & Cowling, E. B., 1978. Development of discoloration, decay and micro-organisms following wounding of Sweetgum and Yellow poplar trees. Phytopathology 68, 609619.CrossRefGoogle Scholar
Thompson, W., 1984. Distribution, development and functioning of mycelial cord systems of decomposer basidiomycetes of the deciduous woodland floor. In The Ecology and Physiology of the Fungal Mycelium, eds. Jennings, D. H., & Rayner, A. D. M., pp. 185214. Cambridge: Cambridge University Press.Google Scholar
Tribe, H. T., 1988. Colonisation of hair in disturbed soils. Proceedings of the Royal Society of Edinburgh 94B, 109117.Google Scholar
Vanbreuseghem, R., 1952. Technique biologique pour l'isolement des dermatophytes du sol. Annales de la Société Belge de médecine tropicale 32, 173178.Google Scholar
Wainwright, M. S., 1988. Effects of point source atmospheric pollution on fungal communities. Proceedings of the Royal Society of Edinburgh 94B, 97104.Google Scholar
Watling, R., 1988. Larger fungi and some of earth's major catastrophies. Proceedings of the Royal Society of Edinburgh 94B, 4959.Google Scholar
Webster, J., 1988. The coprophilous fungus succession - a model system. Proceedings of the Royal Society of Edinburgh 94B, 4546.Google Scholar
Wicklow, D. T., 1988. Parallels in the development of post-fire fungal and herb communities. Proceedings of the Royal Society of Edinburgh 94B, 8795.Google Scholar
Zak, J. C., 1988. Redevelopment of biological activity in strip-mine spoils: saprotrophic fungal assemblages of grass roots. Proceedings of the Royal Society of Edinburgh 94B, 7383.Google Scholar