Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T15:23:04.808Z Has data issue: false hasContentIssue false

Intrauterine testosterone exposure and depression risk in opposite-sex and same-sex twins, a Danish register study

Published online by Cambridge University Press:  16 March 2021

M. Vinberg*
Affiliation:
Mental Health Services, Capital Region of Denmark, Psychiatric Centre North Zealand, Hillerød, Denmark Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
M. K. Wium-Andersen
Affiliation:
Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
I. K. Wium-Andersen
Affiliation:
Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
M. B. Jørgensen
Affiliation:
Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
K. Christensen
Affiliation:
Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, University of Southern Denmark, Odense, Denmark Department of Psychology, University of Minnesota, Minneapolis, MN, USA
M. Osler
Affiliation:
Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
*
Author for correspondence: M. Vinberg, E-mail: maj.vinberg@regionh.dk

Abstract

Background

Males have a lower prevalence of depression than females and testosterone may be a contributing factor. A comparison of opposite-sex and same-sex twins can be used indirectly to establish the role of prenatal testosterone exposure and the risk of depression. We therefore aimed to explore differences in depression risk using opposite-sex and same-sex twins.

Methods

We included 126 087 opposite-sex and same-sex twins from the Danish Twin Registry followed in nationwide Danish registers. We compared sex-specific incidences of depression diagnosis and prescriptions of antidepressants between opposite-sex and same-sex twins using Cox proportional hazard regression.

Results

During follow-up, 2664 (2.1%) twins were diagnosed with depression and 19 514 (15.5%) twins had purchased at least one prescription of antidepressants. First, in male twins, we found that the opposite-sex male twins had the same risk of depression compared to the same-sex male twins {hazard ratio (HR) = 1.01 [95% confidence interval (CI) 0.88–1.17)]}. Revealing the risk of use of antidepressants, the opposite-sex male twins had a slightly higher risk of 4% (HR = 1.04 (95% CI 1.00–1.11)) compared with the same-sex male twins. Second, in the female opposite-sex twins, we revealed a slightly higher, however, not statistically significant risk of depression (HR = 1.08 (95% CI 0.97–1.29)) or purchase of antidepressants (HR = 1.01 (95% CI 0.96–1.05)) when compared to the same-sex female twins.

Conclusions

We found limited support for the hypothesis that prenatal exposure to testosterone was associated with the risk of depression later in life.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrenfeldt, L. J., Christensen, K., Segal, N. L., & Hur, Y. M. (2020). Opposite-sex and same-sex twin studies of physiological, cognitive and behavioral traits. Neuroscience Biobehavioral Reviews, 108, 322340. doi:10.1016/j.neubiorev.2019.11.004.CrossRefGoogle ScholarPubMed
Amore, M., Scarlatti, F., Quarta, A. L., & Tagariello, P. (2009). Partial androgen deficiency, depression and testosterone treatment in aging men. Aging Clinical and Experimental Research, 21(1), 18. doi:10.1007/BF03324891.CrossRefGoogle ScholarPubMed
Barth, C., Villringer, A., & Sacher, J. (2015). Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Frontiers in Neuroscience, 9, 37. doi:10.3389/fnins.2015.00037.CrossRefGoogle ScholarPubMed
Berenbaum, S. A., & Beltz, A. M. (2011). Sexual differentiation of human behavior: Effects of prenatal and pubertal organizational hormones. Frontiers in Neuroendocrinology, 32(2), 183200. doi:10.1016/j.yfrne.2011.03.001.CrossRefGoogle ScholarPubMed
Christiansen, L., Frederiksen, H., Schousboe, K., Skytthe, A., von Wurmb-Schwark, N., Christensen, K., & Kyvik, K. (2003). Age- and sex-differences in the validity of questionnaire-based zygosity in twins. Twin Research, 6(4), 275278. Retrieved from PM:14511432.CrossRefGoogle ScholarPubMed
Eid, R. S., Gobinath, A. R., & Galea, L. A. M. (2019). Sex differences in depression: Insights from clinical and preclinical studies. Progress in Neurobiology, 176, 86102. doi:10.1016/j.pneurobio.2019.01.006.CrossRefGoogle ScholarPubMed
Fernandez-Guasti, A., Fiedler, J. L., Herrera, L., & Handa, R. J. (2012). Sex, stress, and mood disorders: At the intersection of adrenal and gonadal hormones. Hormone and Metabolic Research, 44(8), 607618. doi:10.1055/s-0032-1312592.Google ScholarPubMed
Frokjaer, V. G. (2020). Pharmacological sex hormone manipulation as a risk model for depression. Journal of Neuroscience Reviews, 98(7), 12831292. doi:10.1002/jnr.24632.Google ScholarPubMed
Henriksson, S., Boethius, G., Hakansson, J., & Isacsson, G. (2003). Indications for and outcome of antidepressant medication in a general population: A prescription database and medical record study, in Jamtland County, Sweden, 1995. Acta Psychiatrica Scandinavica, 108(6), 427431. doi:10.1046/j.0001-690x.2003.00166.x.CrossRefGoogle Scholar
Hines, M. (2020). Human gender development. Neuroscience Biobehavioral Reviews, 118, 8996. doi:10.1016/j.neubiorev.2020.07.018.CrossRefGoogle ScholarPubMed
Kendler, K. S., & Gardner, C. O. (2014). Sex differences in the pathways to major depression: A study of opposite-sex twin pairs. American Journal of Psychiatry, 171(4), 426435. doi:10.1176/appi.ajp.2013.13101375.CrossRefGoogle ScholarPubMed
Kessing, L. (1998). Validity of diagnoses and other clinical register data in patients with affective disorder. European Psychiatry, 13(8), 392398. Retrieved from PM:19698654.CrossRefGoogle ScholarPubMed
McCarthy, M. M., Herold, K., & Stockman, S. L. (2018). Fast, furious and enduring: Sensitive versus critical periods in sexual differentiation of the brain. Physiology & Behavior, 187, 1319. doi:10.1016/j.physbeh.2017.10.030.CrossRefGoogle ScholarPubMed
McCormick, C. M., Furey, B. F., Child, M., Sawyer, M. J., & Donohue, S. M. (1998). Neonatal sex hormones have ‘organizational’ effects on the hypothalamic–pituitary–adrenal axis of male rats. Developmental Brain Research, 105(2), 295307. doi:10.1016/s0165-3806(97)00155-7.CrossRefGoogle ScholarPubMed
Merikangas, A. K., & Almasy, L. (2020). Using the tools of genetic epidemiology to understand sex differences in neuropsychiatric disorders. Genes, Brain and Behavior, 19(6), e12660. doi:10.1111/gbb.12660.CrossRefGoogle ScholarPubMed
Miller, E. M. (1995). Reported myopia in opposite sex twins: A hormonal hypothesis. Optometry and Vision Science, 72(1), 3436. doi:10.1097/00006324-199501000-00007.CrossRefGoogle ScholarPubMed
Momen, N. C., Plana-Ripoll, O., Agerbo, E., Benros, M. E., Borglum, A. D., Christensen, M. K., & McGrath, J. J. (2020). Association between mental disorders and subsequent medical conditions. New England Journal of Medicine, 382(18), 17211731. doi:10.1056/NEJMoa1915784.CrossRefGoogle ScholarPubMed
Mors, O., Perto, G. P., & Mortensen, P. B. (2011). The Danish Psychiatric Central Research Register. Scandinavian Journal of Public Health, 39(Suppl 7), 5457. Retrieved from PM:21775352.CrossRefGoogle ScholarPubMed
Nead, K. T. (2019). Androgens and depression: A review and update. Current Opinion in Endocrinology, Diabetes and Obesity, 26(3), 175179. doi:10.1097/MED.0000000000000477.Google Scholar
Pedersen, C. B. (2011). The Danish civil registration system. Scandinavian Journal of Public Health, 39(Suppl 7), 2225. doi:10.1177/1403494810387965.CrossRefGoogle ScholarPubMed
Phoenix, C. H., Goy, R. W., Gerall, A. A., & Young, W. C. (1959). Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female Guinea pig. Endocrinology, 65, 369382. doi:10.1210/endo-65-3-369.CrossRefGoogle ScholarPubMed
Pottegard, A., Schmidt, S. A. J., Wallach-Kildemoes, H., Sorensen, H. T., Hallas, J., & Schmidt, M. (2017). Data resource profile: The Danish National Prescription Registry. International Journal of Epidemiology, 46(3), 798798f. doi:10.1093/ije/dyw213.Google ScholarPubMed
Ryan, B. C., & Vandenbergh, J. G. (2002). Intrauterine position effects. Neuroscience Biobehavioral Reviews, 26(6), 665678. doi:10.1016/s0149-7634(02)00038-6.CrossRefGoogle ScholarPubMed
Salk, R. H., Hyde, J. S., & Abramson, L. Y. (2017). Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychological Bulletin, 143(8), 783822. doi:10.1037/bul0000102.CrossRefGoogle ScholarPubMed
Schmidt, M., Schmidt, S. A., Sandegaard, J. L., Ehrenstein, V., Pedersen, L., & Sorensen, H. T. (2015). The Danish National Patient Registry: A review of content, data quality, and research potential. Clinical Epidemiology, 7, 449490. doi:10.2147/CLEP.S91125.CrossRefGoogle ScholarPubMed
Seale, J. V., Wood, S. A., Atkinson, H. C., Harbuz, M. S., & Lightman, S. L. (2005). Postnatal masculinization alters the HPA axis phenotype in the adult female rat. Journal of Physiology, 563(Pt 1), 265274. doi:10.1113/jphysiol.2004.078212.CrossRefGoogle ScholarPubMed
Sinclair, D., Purves-Tyson, T. D., Allen, K. M., & Weickert, C. S. (2014). Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 231(8), 15811599. doi:10.1007/s00213-013-3415-z.CrossRefGoogle ScholarPubMed
Skytthe, A., Christiansen, L., Kyvik, K. O., Bodker, F. L., Hvidberg, L., Petersen, I., & Christensen, K. (2013). The Danish Twin Registry: Linking surveys, national registers, and biological information. Twin Research and Human Genetics, 16(1), 104111. doi:10.1017/thg.2012.77.CrossRefGoogle ScholarPubMed
Slutske, W. S., Bascom, E. N., Meier, M. H., Medland, S. E., & Martin, N. G. (2011). Sensation seeking in females from opposite- versus same-sex twin pairs: Hormone transfer or sibling imitation? Behavior Genetics, 41(4), 533542. doi:10.1007/s10519-010-9416-3.CrossRefGoogle ScholarPubMed
Tapp, A. L., Maybery, M. T., & Whitehouse, A. J. (2011). Evaluating the twin testosterone transfer hypothesis: A review of the empirical evidence. Hormones and Behavior, 60(5), 713722. doi:10.1016/j.yhbeh.2011.08.011.CrossRefGoogle ScholarPubMed
Veldhuis, J. D. (1996). Neuroendocrine mechanisms mediating awakening of the human gonadotropic axis in puberty. Pediatric Nephrology, 10(3), 304317. doi:10.1007/BF00866767.CrossRefGoogle ScholarPubMed
Veldhuis, J. D. (1998). Neuroendocrine control of pulsatile growth hormone release in the human: Relationship with gender. Growth Hormone & IGF Research, 8 (Suppl B), 4959. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10990135.CrossRefGoogle ScholarPubMed
Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine, H. E., & Vos, T. (2013). Global burden of disease attributable to mental and substance use disorders: Findings from the global burden of disease study 2010. Lancet, 382(9904), 15751586. doi:10.1016/S0140-6736(13)61611-6.CrossRefGoogle ScholarPubMed
Wium-Andersen, M. K., Dalgaard Villumsen, M., Wium-Andersen, I. K., Jorgensen, M. B., Hjelmborg, J. B., Christensen, K., & Osler, M. (2020). Familial risk and heritability of depression by age at first diagnosis in Danish twins. Acta Psychiatrica Scandinavica, 142(6), 446455. doi:10.1111/acps.13238.CrossRefGoogle ScholarPubMed
Yonkers, K. A., & Simoni, M. K. (2018). Premenstrual disorders. American Journal of Obstetrics and Gynecology, 218(1), 6874. doi:10.1016/j.ajog.2017.05.045.CrossRefGoogle ScholarPubMed
Zitzmann, M. (2006). Testosterone and the brain. Aging Male, 9(4), 195199. doi:10.1080/13685530601040679.CrossRefGoogle ScholarPubMed
Zuloaga, D. G., Heck, A. L., De Guzman, R. M., & Handa, R. J. (2020). Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biology of Sex Differences, 11(1), 44. doi:10.1186/s13293-020-00319-2.CrossRefGoogle ScholarPubMed